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On the ridge of instability 
in ferrofluidic Couette flow 
via alternating magnetic field
Sebastian Altmeyer

There is a huge number of natural and industrial flows, which are subjected to time-dependent 
boundary conditions. The flow of a magnetic fluid under the influence of temporal modulations is such 
an example. Here, we perform numerical simulations of ferrofluidic Couette flow subject to time-
periodic modulation (with frequency �

H
 ) in a spatially homogeneous magnetic field and report how 

such a modulation can lead to a significant Reynolds number Re enhancement. Consider a modified 
Niklas approximation we explain the relation between modulation amplitude, driving frequency and 
stabilization effect. From this, we describe the system response around the primary instability to be 
sensitive/critical by an alternating field. We detected that such an alternating field provides an easy 
and in particular accurate controllable key parameter to trigger the system to change from subcritical 
to supercritical and vice versa. Our findings provide a framework to study other types of magnetic 
flows driven by time-dependent forcing.

The spontaneous formation of spatial and temporal patterns can be observed in many physical, chemical, and 
biological systems that are driven out of the  equilibrium1. A well known and extensively investigated hydro-
dynamic pattern forming system is the Taylor–Couette system (TCS)2,3 consisting of two concentric cylinders 
with different radii which can rotate independently of each other. Typical control parameter is the dimensionless 
Reynolds numbers Re, pondering the effects of inertia and viscosity.

The effect of time-periodic forcing in TCS has been investigated in numerous  works4–11. Such a forcing can 
be realized by (axial or azimuthal) oscillation of one or both cylinders, further by pulsation of axial imposed 
flow or radial through flow, with the latter requiring porous cylinder walls. Considering magnetic fluids, e.g. 
ferrofluids12, offers an alternative method to realize such a periodic forcing.

Ferrofluids are manufactured fluids, which consist of dispersions of magnetized nanoparticles in a variety 
of liquid  carriers12,13. In order to avoid or at least to minimize agglomeration effects they are stabilized by the 
addition of a surfactant monolayer surrounding the particles. If no magnetic field is present the fluid behaves 
as a classical fluid with zero net magnetization as the magnetic nanoparticles are randomly orientated. In this 
scenario the fluid’s viscosity and density experience typically very small alteration due to the presence of the 
nanoparticles itselves. The latter however, significantly changes when a magnetic field is applied. For a sufficiently 
strong magnetic field, the ferrofluid flows toward regions of the magnetic field. This coincide with a change in 
the fluid’s properties such as the viscosity. This, also known as the magneto-viscous  effect14,15, can significantly 
change the hydrodynamics of the system. Applications using ferrofluids are versatile and can be found in differ-
ent fields and areas, spanning from separation over mechanical positioning towards medical  applications16,17.

Magnetic fluids such as ferrofluids show a strong paramagnetic behavior if exposed to an external magnetic 
 field12,18. To date, most numerical and experimental studies of ferrofluidic flows in TCS consider static magnetic 
fields have been conducted considering different field orientations, internal magnetization, agglomeration and 
other  effects15,18–28. All these works came to one common conclusion that the basic state (Circular Couette flow, 
CCF) in the system becomes stabilized with increasing magnetic field strength. Thus the thresholds for the first 
appearing instability (here a centrifugal  instability2) is shifted to larger Re. For here considered TCS with outer 
cylinder at rest, the homogeneous CCF state grows into the structured solution of Taylor vortex flow (TVF) 
crossing the critical threshold and breaking the axial translation invariance.

One possibility to introduce periodic forcing into the system is the realization by periodic modulation of the 
external magnetic field, which results in a time-dependent magnetic parameter. In the current paper this is the 
time-dependent Niklas  parameter19.
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To date, studies of ferrofluid under alternating magnetic fields are relatively rare and if conducted special 
attention has been given to their heat  behavior29,30. Most prominent observation for ferrofluidic flows under 
alternating fields is the fact that sufficiently high modulation frequency field will force a faster rotation of the 
particles. This spins up the fluid and thus reduces it’s viscosity while in contrast a static field hindrance the free 
rotation of the magnetic material resulting in an increase of viscosity. In literature occasionally referred to as 
negative viscosity of the  ferrofluid20,31. Other works also focussed on the dependence of particle agglomeration 
under rotating  field32.

Knowing about the stabilization effect of an applied magnetic field, the question arises how does the system 
response under an alternating magnetic field for control parameters around the bifurcation threshold of the 
first instability. To understand the dynamics and system response while “walking” along this ridge of instability 
between sub- and supercritical states is a main focus of the present work.

Here we numerically study modulated ferrofluidic Couette flow within a wide range modulation frequency 
and amplitude and observe a significant enhancement in system stability (in Re ≈ 220% ). Further we demon-
strate that such an alternating magnetic field provides an easy controllable and quite accurate way to balance the 
system and walk along the narrow ridge of instability. As such it allows to drive the system to be subcritical or 
supercritical.

Results
System parameters. In TCS (Fig. 1a) the flow strength is represented in terms of the Reynolds number 
Re = ωirid/ν (the ratio between inertia and viscous forces), which is a very well suited parameter to describe 
the driving of the  system33. Here ri is the non-dimensionalized radius and ωi the angular velocity of the inner 
cylinder. No-slip boundary conditions are used on the cylinder surfaces. The system can be characterized in the 
cylindrical coordinate system (r, θ , z) by the velocity field u = (u, v,w) and the corresponding vorticity field 
∇ × u = (ξ , η, ζ ) . The radius ratio of the cylinders, is kept fixed at 0.5. The time, and length scales are made 
dimensionless by diffusion time d2/ν and gap width d. The pressure in the fluid is normalized by ρν2/d2.

In the periodically modulated TCS, we give a sinusoidal modulation signal to the external magnetic field (par-
allel to the system symmetry (z) axis, uniform in space and harmonic in time) as Hz = [HS +HM sin (�Ht)]ez . 
As earlier reported such a pure axial magnetic field does not change the system symmetry and only shift the 
stability  thresholds23,24. The magnetic field H and the magnetization M are conveniently normalized by the 
quantity 

√
ρ/µ0ν/d , with free space permeability µ0 . By using a modified Niklas  approach19,24 the effect of the 

magnetic field and the magnetic properties of the ferrofluid on the velocity field can be characterized by the 
(time dependent) Niklas function (see “Methods” section for details)

with three control parameters, sz,S being the static contribution of the driving, sz,M the modulation amplitude, 
and �H the modulation frequency. See “Methods” section for more details.

Explored parameter space. We explore the parameter space within sz,S ∈ [0, 1] and sz,M ∈ [0, 1] . The 
trajectories I and II shown in the parameter space of Fig. 1b represent pure static and pure alternating magnetic 
fields, respectively. Point A presents the parameters for supercritical flow (Taylor Vortex flow, TVF) at Re = 100 . 
The trajectories III and IV highlight the parameters at which we provide a more detailed study around the onset 
of instability at point B for Re = 80 (cf. Fig. 5).

Stability behavior. Static magnetic fields ( sz,M = 0). Such static fields have been studied in detail in nu-
merous  works22–25 with the common result that any applied magnetic field regardless it’s orientation stabilizes 
the CCF basic state. Thus the bifurcation thresholds for primary instability (of TVF) are moved to larger Re with 
increasing field strength sz,S (Fig. 2a). Without magnetic fields, i.e. sz = 0 the critical value is Re0c = 68.8 . Worth 
mentioning that other axial wavenumber (here k = 3.927 ) will lead to other critical Reynolds numbers Re0c . 

(1)sz(t) = sz,S + sz,M sin (�Ht),
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Figure 1.  System and explored parameter space. (a) Schematic of the Taylor-Couette system (TCS) with an 
external applied homogeneous magnetic field Hz(t) = [HS +HM sin (�Ht)]ez . (b) The arrows I and II indicate 
the investigated parameter space spanned by sz,S ∈ [0, 1] and sz,M ∈ [0, 1] . Point A gives the parameters for 
supercritical flow at Re = 100 . III and IV correspond to the set of parameters around the onset of stability in 
point B Re = 80.
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Figure 2.  Stability in magnetic fields. (a) Stability boundaries for a static magnetic field as a function of sz,S . 
The curve can be approximated by the function Rec(sz,S) = Re

0
c + a1s

2
z,S ( a1 = 53.3 ), where Re0c is the stability 

threshold in absence of any magnetic field. Horizontal arrows at Re = 80 across the stability boundary indicate 
the range of the alternating magnetic field discussed in Fig. 5. The inset illustrates the bifurcation scenario of 
the dominant mode amplitude |u0,1| for static, and two different modulated driven magnetic fields at parameters 
as indicated ( �H = 100 ) at Re = 80 . (b) Surface illustrating the critical Reynolds number Rec over (sz,S , sz,M)

-plane. (c) Cross sections of (b) for different static field strength sz,S as indicated. The location of the bifurcation 
thresholds moves towards larger critical Reynolds number Rec[sz(t)] (in high frequency limit). The inset shows 
the relative distance ǫ from the respective onset for static fields versus the squared modulation amplitudes 
(sz,M)2.
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The stabilization can be approximated with a power law according to Rec(sz,S) = Re0c + a1s
2
z,S (with a1 = 53.3 ) 

(Fig. 2a).

Modulated magnetic fields ( sz,M  = 0). Similar to increasing field strength sz,S for static magnetic fields, 
also an increase in the modulation amplitude sz,M stabilizes the system. Figure 2b presents the surface of Rec 
(over (sz,S , sz,M)-plane) which is convex in all points in any direction. Thereby the quantity of stabilization also 
increases with increasing modulation amplitude (Fig. 2c). Although this behavior remains qualitative the same 
for alternating magnetic fields with different static contributions sz,S , the relative effect weakens with increasing 
the static contribution. For parameters in Fig. 2 the maximum stability enhancement in Re is about 220% , com-
paring the system in absence of any magnetic field with alternating magnetic field at (sz,S = 1 = sz,M) . The inset 
in Fig. 2c presents the variation of reduced value ǫ = Rec[sz(t)]/Re

0
c (sz,S)− 1 against the squared modulation 

amplitudes (sz,M)2 . The stabilization of the CCF basic state can be quantified with an approximate power law 
according to Rec[s(t)] = Re0c (sz,S)+ a1s

2
z,S (with a1 = 29.5 ), where Re0c (sz,S) is the stability threshold in pres-

ence of a static magnetic field. The decreasing slopes �ǫ/�(sz,M)2 (inset in Fig. 2c) originate from the stronger 
stabilization effect in pure static magnetic fields.

In terms of stability one can summarize, that the system reacts to an alternating modulation of the magnetic 
field similar as increasing the magnetic field strength in the static case. The stronger stabilization with increasing 
modulation amplitude originates from the static field behavior in particular it’s non-linear grows with power of 
2 (Fig. 2a). Thus during one modulation period the system experience a stronger stabilization effect while the 
modulation amplitude is above the average field strength in comparison to the de-stabilization in the other half 
period. As result (for high frequency) the stabilization within an alternating magnetic field corresponds to a static 
field strength, which lies above the mean value of the alternating field. For the same reason the stabilization also 
grows with increasing modulation amplitude (Fig. 2c).

Bifurcation behavior. Figure 3 illustrates the stable forward bifurcating branches of TVF solutions for different 
modulation amplitudes sz,M as indicated ( sz,S = 0 ) of the magnetic field. The onsets corresponds to the critical 
curve in absence of any magnetic field sz,S = 0 (Fig. 2 in main paper). Being supercritical the dominant mode 
amplitudes |u0,1| grow in well known square root manner. For better comparison we also consider use the relative 
distance µ = Re(sz,S)/Re

0
c − 1 (inset), with Re0c (depending on system parameters, e.g. the axial wavenumber k) 

being the Reynolds number for which the flow becomes supercritical in the absence of a magnetic fields.
As a result one can say, increasing the modulation amplitude sz,M moves the onset of instability to larger con-

trol parameters (Re, to the right in Fig. 3) and therefore stabilizes the CCF basic state. In addition it also slightly 
effects/modifies the bifurcation characteristics itself. Rescaling the bifurcation scenario by the corresponding 
onsets (insets in Fig. 3) one sees that with increasing modulation amplitudes sz,M also the mode amplitudes 
grow faster, the corresponding slopes become steeper. Similar observation numerical and experimental has been 
already found for increasing field strength in static magnetic  fields22–24.

A further bifurcation scenario of the dominant mode amplitudes |u0,1| for static non-zero, and two dif-
ferent modulated driven magnetic fields (also with finite static contribution) is shown at the inset in Fig. 2a 
( �H = 100,Re = 80 ). The chosen parameters (cf. horizontal arrows in Figs. 1b, 2a) correspond to those for which 
in the following the dynamic system response will be investigated. For larger modulation amplitude sz,M = 0.2 , 
TVF dissapear at smaller corresponding static control parameter sz,S and the system returns to the CCF basic 
state. This is another confirmation for stabilization effect with increasing modulation amplitude sz,M.
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Figure 3.  Mode amplitudes |u0,1| of (dominant) radial flow field amplitudes of TVF at mid gap versus Reynolds 
number Re. The inset shows the same but using the relative distance µ = Re(sz,S)/Re

0
c − 1 , of the Reynolds 

number Re from the respective onset with different modulation amplitudes sz,M in the magnetic fields as 
indicated.
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Dynamic system response. Supercritical flow state. Consider supercritical TVF at 
Re = 100 ⇔ µ = Re(sz(t))/Re

0
c = 0.453 (far away from the onset of instability Rec(sz = 0) = 68.8 ). Figure 4 

shows the oscillation of the control function sz(t) together with the system response, illustrated by the mode 
amplitudes |u0,1| as a function of the reduced time t/TH ( TH = 2π/�H being the associated modulation period). 
The temporal oscillations are shown for different frequencies �H as indicated.

In the high-frequency limit, solely the time average of sz(t) affects the stability behavior. Thus, in this limit the 
stability boundary coincides with a static stability boundary using an equivalent static magnetic Niklas param-
eter. Note, that this larger than the mean value 〈sz(t)〉TH (cf. Fig. 4a). For the given field the order parameters 
for equivalent static driving is sz = 0.245 , which, for the sake of reference is also included (red dashed lines) in 
Fig. 4 (Note here �sz(t)�TH = 0.2 ). For the modulation with the high frequency �H � 100 , the flow dynamics 
is nearly averaged. Variations in the dominant mode amplitude |u0,1| are small compared to its mean value. For 
�H = 100 the modulation amplitude �|u0,1| is barely 0.29% of its time mean (Fig. 4b). A phase shift between the 
maximum and minimum of field function sz(t) versus the minimum and maximum of the mode amplitudes |u0,1| 
occurs: the latter ones are temporally delayed to the former because of the inertia of the fluid resisting the fast 
changing accelerating Kelvin force leading to this time lag. Consistently the phase shift decreases with decreasing 
frequency (best visible for |u0,1| in Fig. 4b). Thereby the oscillation amplitudes are increasing with smaller �H . 
The lower the modulation frequency, the closer the oscillation profiles get to the curve of a static magnetic field 
(red squares). Deviations just persist in the vicinity of the bifurcation threshold, because the dynamics become 
infinitely slow there.

The inharmonic behavior in the mode amplitudes |u0,1| (Fig. 4b) for very low frequency (and the static limit) 
reflects the increasing effect onto the flow dynamics with increasing field strength sz(t) (Fig. 2). For �sz(t)� = 0.2 
the system is supercritical with µ ≈ 0.4(Rec = 77.7) which over one period decreases to (i) µ = 0.29(Rec = 71.3) 
(at max(sz,M) = 0.2 ) and increases to (ii) µ ≈ 0.45(Rec = 68.8) (at min(sz,M) = 0.0 ). Thus, the stabilization effect 
is significant stronger for positive modulation amplitude. Figure 4b reflects this by either steeper/larger variation 
�|u0,1| for positive modulation amplitude sz,M > 0 as well as a much flatter profile |u0,1| for negative modula-
tion amplitude sz,M < 0 . The latter is a direct consequence of smaller variation in Rec with small field strengths 
(Fig. 2a). Worth mentioning, although not further studied such inharmonic response behavior has been earlier 
reported in Rayleigh–Bénard system exposed to a time-periodic magnetic  field34.

Interesting observation is the fact that for low frequencies �H , approaching the static state the mode ampli-
tudes |u0,1| within one period slightly overshoot the maximum and minimum values of their static counterparts. 
For high frequencies �H � 30 the mode amplitudes |u0,1| move around the average well within their maximum 
and minimum limits. It is the inertia of the fluid itself which causes this overshooting.
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Figure 4.  Supercritical TVF in magnetic fields with different driving frequencies �H . (a) Temporal oscillations 
of the control function sz(t) = sz,S + sz,M sin (�ht) ( sz,S = 0.2, sz,M = 0.2 ). (b) The dominant mode amplitude 
|u0,1| as a function of the reduced time t/TH ( TH = 2π/�H being the modulation period associated with the 
corresponding frequency). The red squares show the stationary response to stationary magnetic field with 
magnetic field strength sz given by the actual value of sz(t) . The dashed red lines show the order parameter for 
stationary driving with the mean Niklas parameter �sz(t)� = 0.245 . Further control parameter Re = 100.
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Walking the ridge of instability. In the following we will focus on an alternating magnetic field for such parame-
ters that the system changes between subcritical and supercritical response over one period of driving. Consider 
for Re = 80 an alternating magnetic field with sz,S = 0.4 and sz,M = 0.1 or sz,M = 0.2 . While in the pure static 
case the system is supercritical (cf. point B in Figs. 1, 2), it becomes temporally subcritical for both considered 
modulation amplitudes.

Small modulation amplitude ( sz,M = 0.1). The system becomes only slightly subcritical over one period. In the 
high frequencies limit the time averaged magnetic field 〈sz(t)〉 for modulated driving (dashed red line in Fig. 51c) 
corresponds to a static magnetic field with sz,S ≈ 0.423 (cf. inset in Fig. 2). With decreasing frequency �H first 
the amplitude in the oscillating mode |u0,1| continuously increase before at �H � 0.5 it eventually becomes tem-
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Figure 5.  Non-linear system response around the instability. (a) Time evolution of the dominant mode 
amplitude |u0,1| as a function of time for different �H as indicated and modulation amplitudes (1) sz,M = 0.1 
and (2) sz,M = 0.2 , respectively (cf. trajectory III and IV in Fig. 1). Either of these modulation starts at 
t = 0 , before only a static field sz,S = 0.4 ( sz,M = 0.0 ) is present. For clarity/visibility mode amplitudes 
|u0,1| are only shown until t = 25 in case of �H � 0.5 (1a). (b) Temporal oscillations of the control function 
sz(t) = sz,S + sz,M sin (�ht) . The dotted black and dashed red lines mark the stationary ( sz,S = 0.4 , sz,M = 0.0 ) 
and high frequency limit oscillatory ( sz,S = 0.4 , sz,M = 0.1 ) bifurcation threshold, respectively. (c) as (a) but 
as a function of the reduced time t/TH . The red squares show the response to stationary magnetic field with 
magnetic field strength sz given by the actual value of sz(t) . The red dashed line in (1c) indicates the (time 
averaged) mode amplitudes for modulated driving ( �H = 50, 100 almost falls on top of it). Note, that in (1) 
for modulated driving with �H � 0.27 the system remains supercritical. Other for (2) at which for modulated 
driving with �H � 0.27 the system remains subcritical. Further control parameter Re = 80.
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porally zero indicating that the system is now subcritical. The smaller the frequency �H , the longer the system 
remains subcritical (Fig. 51c). Over one period, for such low frequencies, a fast growth of the mode amplitude 
|u0,1| followed by a relaxing just similarly to values close to the stationary can be observed. With further decreas-
ing �H the oscillation profile in the mode amplitudes |u0,1| approaches the static scenario. As for full supercriti-
cal flow state (Fig. 4), a temporally delay between the extrema of sz(t) and the corresponding extrema (min and 
max) in the mode amplitudes |u0,1| appears.

Large modulation amplitude ( sz,M = 0.2). The system goes deeper into the subcritical regime within one 
period of driving (Fig. 5(2)) and as a result remains subcritical in the high frequency limit (see inset in Fig. 2), 
which is just opposite to the scenario for small modulation amplitude (1). The decay of the mode amplitudes 
|u0,1| in Fig. 5b for larger frequencies �H clearly illustrates the subcriticality for here given alternating field. Cor-
responding equivalent static magnetic field is sz,S ≈ 0.407 . However, with decreasing �H the system becomes 
temporally supercritical. Analogous fast growth of the mode amplitude |u0,1| followed by a relaxing close to the 
stationary state appears. Again, the lower the modulation frequency �H , the larger the oscillation amplitudes 
|u0,1| , thereby approaching the limiting value given by the respective stationary solution curve (red squares in 
Fig. 5(2c)).

Discussion
We have shown that ferrofluidic Couette flow under alternating magnetic field becomes stabilized. The primary 
instability of TVF is moved towards larger Re, whereby the quantity of stabilization increases with larger modu-
lation amplitude. This is similar to the modification due to static magnetic fields with increasing field strength. 
With increasing oscillation frequency the temporal evolution/response in the system decreases. The stability 
boundary for alternating magnetic field in high-frequency limit corresponds to a static stability boundary which 
is above the mean of the alternating magnetic field. This results from the fact that during one modulation period 
the system experience a stronger stabilization effect while the modulation amplitude is above the average field 
strength in comparison to the de-stabilization in the other half period. For very low modulation frequencies the 
oscillation profiles approach the stationary curves.

In addition, we found that the system response is selective to driving parameters around the primary instabil-
ity. As such an alternating magnetic field can force/drive the system to be subcritical or supercritical.

The schematic in Fig. 6 summarizes the non-linear system response based on small and large modulation 
amplitudes with respect to variation in the driving frequency �H . In any case the high frequency limit selects a 
single solution, the system is either sub- or supercritical. Which of the solution is selected (subcritical or super-
critical) depends on the modulation amplitude. For studied parameters, sz,S = 0.4 and modulation amplitudes 
sz,M = 0.1 and sz,M = 0.2 , respectively (Fig. 5) the selection appears at �H ≈ 0.27 . Main characteristics while 
“surfing the edge of instability” can be described as follows: For small magnetic modulation amplitudes the 
system is supercritical for high frequencies �H . Decreasing the frequency modifies this scenario and the system 
becomes temporally sub- and supercritical. On the other hand for large modulation amplitudes the system is 
subcritical in the high frequency limit. However, decreasing the frequency also modifies the system response to 
be temporally subcritical and supercritical.

The present work highlights the importance of complexer fluids under external driving. As such the variation 
in frequency of the alternating field provides a very simple and in particular accurate controllable way to trigger 
the system response to be either subcritical or supercritical. This offers various ways for industrial applications, 
e.g. focussing on the significant difference in torque between the subcritical CCF basic state and the primary 
instability of supercritical TVF.

Methods
Direct numerical simulation. DNS for ferrohydrodynamical flow using the Niklas approximation are 
 employed19,24. In the present study, we consider in axial direction periodic boundary conditions corresponding 
to a fixed axial wavenumber k = 3.927 , motivated by experimental findings for the appearance of primary TVF 
instability in Taylor–Couette flow with outer cylinder at  rest3,33. No-slip boundary conditions are used on the 
cylinder surfaces and the radius ratio of inner and outer cylinders, is kept fixed at ri/ro = 0.5 . The DNS are con-
ducted combining a standard, second-order finite-difference scheme in (r, z) with a Fourier spectral decomposi-
tion in θ and explicit time splitting. The explored parameter range spans 68 � Re � 152 , 0 � (sz,S , sz,M) � 1 , 
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Figure 6.  Schematic illustration for stability change with �H . Schematic illustration the switch between sub- 
and supercritical flow states with variation in the driving frequency �H (increasing left to right) (cf. Fig. 5).
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and 10−3 � �H � 103 . For these parameters, the choice of 16 azimuthal modes provides adequate accuracy. We 
use a uniform grid with spacing δr = δz = 0.02 and time steps δt < 1/3800.

Ferrohydrodynamical equation of motion. The non-dimensionalized hydrodynamical  equations25,27,35 
are given by:

On the cylindrical surfaces, the velocity fields are given by u(ri , θ , z) = (0,Re, 0) and u(ro, θ , z) = (0, 0, 0) , with 
the the Reynolds numbers Re = ωirid/ν , where ri = Ri/(Ro − Ri) is the non-dimensionalized inner cylinder 
radius.

Equation (2) is to be solved together with an equation that describes the magnetization of the ferrofluid. Using 
the equilibrium magnetization of an unperturbed state where homogeneously magnetized ferrofluid is at rest 
and the mean magnetic moment is orientated in the direction of the magnetic field, we have Meq = χH . The 
magnetic susceptibility χ of the ferrofluid can be approximated with the Langevin’s  formula36, where we set the 
initial value of χ to be 0.9 and use a linear magnetization law. The ferrofluid studied corresponds to  APG93337. 
We consider the near equilibrium approximations of  Niklas19,38 with small ||M−M

eq|| and small magnetic relaxa-
tion time τ : |∇ × u|τ ≪ 1 . Using these approximations, one can  obtain27 the following magnetization equation:

where

is the Niklas  coefficient19, µ is the dynamic viscosity, � is the volume fraction of the magnetic material, S is the 
symmetric component of the velocity gradient  tensor27,35, and �2 is the material-dependent transport  coefficient35, 
which we choose to be �2 = 4/524,35,39 based on experimental observation. Using Eq. (3), we can eliminate the 
magnetization from Eq. (2) to obtain the following ferro-hydrodynamical equations of  motion25,27,35:

where F = (∇ × u/2)×H , pM is the dynamic pressure incorporating all magnetic terms that can be expressed 
as gradients, and sz is the Niklas parameter (Eq. (7)). Note, while in earlier studies considering static magnetic 
field this is a real parameter, in the present work devoted to alternating magnetic fields this is basically a time-
dependent function, which we will refer to as Niklas function. To the leading order, the internal magnetic field in 
the ferrofluid can be approximated as the externally imposed  field25, which is reasonable for obtaining dynamical 
solutions of the magnetically driven fluid motion. Equation (5) canthen be simplified as

This way, the effect of the magnetic field (here homogeneous but alternating with Hz = [HS +HM sin (�Ht)]ez ) 
and the magnetic properties of the ferrofluid on the velocity field can be characterized by a single parameter, the 
magnetic field or the (here time dependent) Niklas  parameter19:

with the two time-independent control parameters

standing for the static contribution ( sz,S ) and the modulation amplitude ( sz,M ) of the driving, respectively.

Numerics. The ferrohydrodynamical equations of motion Eq. (6) can be  solved24,25,27 by combining a stand-
ard, second-order finite-difference scheme in (r, z) with a Fourier spectral decomposition in θ and (explicit) time 
splitting. The variables can be expressed as

where f denotes one of the variables {u, v,w, p} . For the parameter regimes considered, the choice mmax = 16 
provides adequate accuracy. We use a uniform grid with spacing δr = δz = 0.02 and time steps δt < 1/3800 . The 
system of coupled equations for the amplitudes fm(r, z, t) of the azimuthal normal modes −mmax � m � mmax 

(2)
(∂t + u · ∇)u −∇2

u +∇p =(M · ∇)H+
1

2
∇ × (M×H),

∇ · u =0.

(3)M−M
eq = c2N

(

1

2
∇ × u ×H+ �2SH

)

,

(4)c2N = τ/
(

1/χ + τµ0H
2/6µ�

)

(5)(∂t + u · ∇)u −∇2
u +∇pM = −

s2z
2

[

H∇ ·

(

F+
4

5
SH

)

+H×∇ ×

(

F+
4

5
SH

)]

,

(6)
(∂t + u · ∇)u −∇2

u +∇pM

= s2z

{

∇2
u −

4

5
[∇ · (SH)]−H×

[

1

2
∇ × (∇ × u ×H)−H× (∇2

u) +
4

5
∇ × (SH)

]}

.

(7)
sz(t) =

√
cNHz =

√
cN [HS +HM sin (�Ht)]

= sz,S + sz,M sin (�Ht),

(8)sz,S =
√
cNHS and sz,M =

√
cNHM

(9)f (r, θ , z, t) =

mmax
∑

m=−mmax

fm(r, z, t) e
imθ ,
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is solved with the FTCS (Forward Time, Centered Space)  algorithm40. Further pressure and velocity fields are 
iteratively adjusted to each other with the method of “artificial compressibility”41.

The pressure correction dp(n) in the nth iteration step being proportional to the divergence of u(n) is used to adapt 
the velocity field u(n+1) . The iteration loop (Eq. (10)) is executed for each azimuthal Fourier mode separately. 
It is iterated until ∇ · u has become sufficiently small for each m mode considered—the magnitude of the total 
divergence never exceeded 0.02 and typically it was much smaller. Time steps were always well below the von 
Neumann stability criterion and by more than a factor of 3 below the Courant–Friederichs–Lewy criterion. 
Hereafter the next FTCS time step is executed.

For diagnostic purposes, we also evaluate the complex mode amplitudes fm,n(r, t) obtained from a Fourier 
decomposition in the axial direction:

where k = 2πd/� is the axial wavenumber.
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