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Abstract

Ternary hybrid nanofluid have been revealed to possess a wide range of application
disciplines reaching from biomedical engineering, detection of cancer, over or photovoltaic
panels and cells, nuclear power plant engineering, to the automobile industry, smart cells
and and eventually to heat exchange systems. Inspired by the recent developments in
nanotechnology and in particular the high potential ability of use of such nanofluids in
practical problems, this paper deals with the flow of a three phase nanofluid of MWCNT-
Au/Ag nanoparticles dispersed in blood in the presence of a bidirectional stretching sheet.
The model derived in this study yields a set of linked nonlinear PDEs, which are first
transformed into dimensionless ODEs. From these ODEs we get a dataset with the help of
MATHEMATICA environment, then solved using AI-based technique utilizing Levenberg
Marquardt Feedforward Algorithm. In this work, flow characteristics under varying
physical parameters have been studied and analyzed and the boundary layer phenomena
has been investigated. In detail horizontal, vertical velocity profiles as well as temperature
distribution are analyzed. The findings reveal that as the stretching ratio of the surface
coincide with an increase the vertical velocity as the surface has thinned in this direction
minimizing resistance to the fluid flow.

Keywords: artificial intelligence; ternary-nano fluid velocity study; neural network;
Levenberg Marquardt Feedforward Algorithm

1. Introduction
The application of Ternary hybrid nanofluids (THNFs) in heat transfer holds signif-

icant promise for improving the efficiency and sustainability of various manufacturing
systems through extensive sort of trades. Ternary nanofluids, that blend a base fluid with
nanoparticles and surfactants or stabilizers, exhibit superior thermal properties compared
to the simpler, single-phase fluids, making them highly attractive for researchers. Their
unique characteristics make them appropriate for numerous heat transfer applications.
For instance, electronics devices like laptops, smartphones, and light emitting diode il-
luminations use ternary nanofluids to efficiently manage the heat formed throughout
the procedure. The enhanced thermal conductivity of these nanofluids allows electronic
components to function more efficiently and reliably, ensuring better heat management.
Additionally, ternary nanofluids can function as a heat transfer media in intense solar power
systems. These nanofluids effectively transfer absorbed solar energy to heat exchangers

Nanomaterials 2025, 15, 1525 https://doi.org/10.3390/nano15191525

https://doi.org/10.3390/nano15191525
https://doi.org/10.3390/nano15191525
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0009-0007-4027-0987
https://orcid.org/0000-0003-2403-2480
https://orcid.org/0000-0001-5964-0203
https://doi.org/10.3390/nano15191525
https://www.mdpi.com/article/10.3390/nano15191525?type=check_update&version=1


Nanomaterials 2025, 15, 1525 2 of 24

or storing containers, enhancing the inclusive proficiency of solar energy exchange sys-
tems. In thermal energy storage systems, the inclusion of ternary nanofluids enhances
energy density and heat transfer proficiency, making them ideal for various renewable
energy applications.

Various researchers [1–6] examined the thermal productivity of nanofluids. Most
studies focused on the thermal capacity capabilities of these HNF and THNF. They devel-
oped novel methods, including new empirical correlations, magnetic strength applications,
and enhanced thermal convection, to enhance the enthalpy maintenance of these fluids.
More precisely, Fatunmbi et al. [7,8] considered the effect of activation energy on the twin
stratified process in non-homogenous convection with magneto-tangent hyperbolic fluids
across a stretchable plate. They applied quasi-linearization method (SQLM) to investigate
dissipative flow of power-law fluids under the effects of Hall currents and power-law slip
conditions when flow accompanies exponentially stretching surface.

G.K. Ramesh et al. [9–11] explored the 3-D Maxwell fluid flow containing on hold
nanoparticles over a 2D porous and extensible surface. They further analyzed the behavior
of an upper-convected Maxwell (UCM) fluid over a radiative, bi-directionally extensible
plate, utilizing an innovative nonlinear Rosseland approximation for thermal radiation. Ad-
ditionally, they investigated the heat transfer characteristics on a bi-directionally stretched
sheet under varying thermal conditions.

Ternary nanofluids can also offer novel cooling solutions for energy-efficient infras-
tructure. For example, vapor compression-vapor absorption cascade refrigeration systems,
which utilize geothermal, solar, and waste heat, can replace traditional single-stage vapor
compression systems, offering reduced electrical consumption [12,13]. Hybridized nanoflu-
ids, with their unique thermal properties, can enhance the cooling process in industrial
refrigeration, biological applications, and medical therapies, including cancer treatment
and epidemic control. Carbon nanotubes (CNTs) are particularly advantageous in heat
transfer applications across sectors like electronics, aerospace, thermal energy storage,
fluid systems, and biomedical treatments. Carbon nanotubes consisting of substances are
critical constituents in thermal exchangers, thermal capacity systems, heat limit filming
and TIMs, improving heat dissipation and system performance. Mishra et al. [14] in-
vestigated the influence of radiation on the flow of Casson hybridized nanofluids over
an elongating or contracting convection surface. Their study focused on the geometry of
nanoparticles, specifically carbon nanotubes (CNTs), and the thermophysical properties of
CNT nanofluids in kerosene oil. They examined the impacts of thermal radiative flux and
magnetohydrodynamics (MHD), additionally, the interaction of radiative and magnetic
forces on CNT-based nanofluids flowing over a flexible sheet in a Newtonian fluid was
investigated. The works by Rafique et al. and Farooq et al. [15,16] provide a mathematical
study to explore the influence of carbon nanotube (CNT) length and radius on the behavior
of nanofluids over a Joule-heated surface with variable viscosity. Additionally, they exam-
ined the impact of thermal radiation on sodium alginate-consisting hybrid nanofluids in
Darcy-Forchheimer model over a stretchable plate.

Thermal radiation, a phenomenon in which hot surfaces emit electromagnetic waves
(mainly infrared), shows a fundamental part in heat transfer applications. The emitted
photons transfer energy via absorption, LFM reflection, or transmission to surrounding
surfaces. Understanding thermal radiation is vital for optimizing energy efficiency in
systems like solar energy utilization, thermal regulation of electronics, insulation materials,
and heating/cooling systems. Several studies [17–20], have scrutinized the impact of radia-
tion. Expanding on these previous works, this research explores the movement of a THNF,
which includes carbon nanotubes, (Au), and (Ag) nanoparticles, across a bi-directionally
stretching sheet, with a focus on its application to blood flow. Various works [21–24] inves-
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tigated the numerical solutions for entropy generation in flow of nanofluid over a surface,
emphasizing its application to radiative management systems. They studied the influence
of thermal radiation and Joule heating on the flow of a magnetized Casson sodium alginate
HNF over a permeable, moveable plate. Additionally, their research explored the behavior
of hybrid nanofluid flow in a vertical annulus with a porous.

Further theoretical investigation [25–27] have been carried out focused on the en-
hancement of entropy changes in mass diffusion within a 3-phase viscous fluid flowing
through an inclined network. Contemporary research has delved into innumerable sides
of the dynamic behavior of ternary nanofluids, a significant field of study that uncovers
the intricacies of specific flow phenomena and their related impacts. Resent works [28,29]
illustrated the ability of using Artificial Intelligence (AI) and Machine Learning ML with
respect to predicting of buoyancy and magnetohydrodynamics for different nanofluids and
hybrid nanofluids over porous media.

In this study, blood is considered as the base fluid because of its direct biomedical
relevance. Lately, there have been quite a few studies focusing on blood-based nanofluids,
especially for things like targeted drug delivery, hyperthermia treatments, and diagnostic
uses. Metallic nanoparticles, like gold (Au) and silver (Ag), are well-known for their
roles in biomedical imaging and cancer detection. On the other hand, carbon nanotubes
(CNTs) have been thoroughly investigated for their applications in cancer hyperthermia and
biosensing. Our mention of “cancer detection” therefore refers to the potential biomedical
application of such nanofluids, rather than a direct experimental validation.

The modern AI approach, LMFA, is applied alongside a machine learning algorithm.
Optimization is achieved through a stochastic technique, which aligns well with the prob-
abilistic nature and randomness of the model under study. A purely numerical method
may fall short in accurately capturing the model’s behavior compared to stochastic results.
The model formulation leads to a set of PDEs, which are converted into a system of ODEs
using correspondence parameters. Using AI, a dataset is generated for three scenarios,
analyzing velocity and temperature profiles based on variations in key variables. This
dataset is processed through 10 embedded neurons in MATLAB’s toolkit. The article
compares numerical and AI-generated outcomes and discusses the errors between the
two approaches. Similar techniques have been already succesfully employed on various
non-linear mathematical models [30–36].

2. Materials and Methods
2.1. Model Development

In this study, we accomplish a bidirectional steady-state enquiry of a magneto-
trihybrid nanofluid containing fine nanoparticles. The impact of the resistive potency
(M) is incorporated into the equation of momentum to regulate the inertia of the THNF. A
steady Lorentz force is applied orthogonally to the flow direction (see Figure 1). However,
the resulting magnetized force is measured unimportantly in association to the functional
magnetic pitch. The cscenario without any mass flux is also taken into consideration.
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Figure 1. The physical arrangement of the THNF model.

2.2. Expectations and Situations of the Framework

The following assumptions form the basis for the development of the mathemati-
cal model:

• The substance is considered porous, the single-phase (Tiwari-Das) model is used.
• The nanofluid is treated as a Newtonian fluid, with Boussinesq and boundary layer

approximations applied.
• The flow exhibits thermal radiation and heat generation.
• Convective heat boundary conditions are assumed.
• Single and multi-walled Carbon Nanotubes (CNT), along with Silver (Ag) nanoparti-

cles, are combined with plasma as the base liquid.
• The THNF is assumed to have uniformly sized, spherical nanoparticles, with no

consideration for aggregation effects.

For the geometry, the surface dimensions are described using coordinates system.
This one is assumed that the rate of flow along horizontal, denoted as uw follows the
function uw = ax, where a is a fixed, non-negative constant, while the velocity along
vertical, denoted as vw, follows the function vw = by, where b is also a fixed, non-negative
constant. The surface is preserved at a convective temperature Tf .

Throughout this manuscript, the shorthand MWCNT–Au/Ag is used to denote a
ternary-hybrid nanofluid composed of multi-walled carbon nanotubes (MWCNTs), gold
(Au), and silver (Ag) nanoparticles dispersed in a base fluid. This compact notation has
been used in recent literature and is adopted here for brevity.

Blood has been modeled here as a Newtonian fluid following the Tiwari-Das single-
phase approach. While blood exhibits shear-thinning behavior in some regimes, under
moderate shear rates and dilute nanoparticle suspensions it is often approximated as
Newtonian. This closure simplifies the mathematical formulation while still capturing the
leading-order thermal effects of nanoparticle loading.
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2.3. Mathematical Modeling

By using the assumptions outlined earlier, along with the standard momentum ap-
proximations, continuity, and energy equations, the governing equations for the boundary
layer of THNF can be formulated [1,37].

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)[
uux + vuy + wuz

]
=

µthn f

ρthn f
uzz −

σthn f

ρthn f
B2

0u −
µthn f

ρthn f

u
K∗ (2)

[
uvx + vvy + wvz

]
=

µthn f

ρthn f
vzz −

σthn f

ρthn f
B2

0v −
µthn f

ρthn f

v
K∗ (3)

[
uTx + vTy + wTz

]
=

kthn f

(ρcp)thn f
Tzz −

Q0

(ρcp)thn f
(T − T∞)− (qr)z

(ρcp)thn f
(4)

The bidirectional stretching sheet is defined with uw = ax and vw = by, where a and b
are stretching rates in the x and y directions, respectively. Under similarity transfaormations,
this leads to the boundary conditions

f (0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = S = b/a, θ′(0) = −Bi(1 − θ(0)),

with f ′(∞) → 0, g′(∞) → 0, and θ(∞) → 0. (5)

The convective thermal boundary condition originates from the Cauchy relation,
−kn f ∂T/∂z = h(Tw − T), where h is the heat transfer coefficient. Upon nondimension-
alization, the Biot number Bi = h

√
(ν f /a)/k f emerges naturally in the wall condition

for temperature.
Radiative heat transfer is modeled using the Rosseland approximation. Expanding T4

around T∞ yields T4 ∼ 4T3
∞T − 3T4

∞, which, when substituted into qr = − 4σ∗
3k∗

∂T4

∂z , eads to

the radiation parameter R = 16σ∗T3
∞

3kh f
appearing in the reduced energy equation.

Following we explicitly show both derivations:

1. Convective BC non-dimensionalization: Starting with

−kthn f
∂T
∂z

∣∣∣∣
z=0

= h(Tf − Tw).

Using similarity transform, it reduces to

θ′(0) = −
kthn f

k f
Bi[1 − θ(0)].

2. Rosseland linearization: Expanding T4 about T∞

T4 ≈ T4
∞ + 4T3

∞(t − T∞).

Substitution yields

qr = −16σ∗T3
∞

3k∗
∂T
∂z

Which leads to the modified coefficient in the energy Equation (16).

2.4. Investigation of the THNF Model

The theoretical research and synthesis procedure of the THNF is illustrated in Figure 2.
Figure 3 shows the nanoparticles of the THNF, the factors under investigation, and their
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thermophysical properties. The effectiveness of the thermophysical models for THNF is
demonstrated in [1].

Figure 2. Theoretical perspective on the preparation and synthesis setup of THNF.

Figure 3. Problem Evaluation Flow Diagram.
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We are using,
hthn f

u f
=

[
1

(1 − φ1)(1 − φ2)(1 − φ3)

] 5
2
, (6)

the density model

ρthn f

ρ f
= (1 − φ3)

[
(1 − φ2)

(
1 − φ1 +

ρs2

ρ f
φ1

)
+

ρs2

ρ f
φ2

]
+

ρs3

ρ f
φ3, (7)

the heat capacity model

(ρcp)thn f

(ρcp) f
= (1 − φ3)

[
(1 − φ2)

(
1 − φ1 +

(ρcp)s2

(ρcp) f
φ1

)
+

(ρcp)s2

(ρcp) f
φ2

]
+

(ρcp)s3

(ρcp) f
φ3, (8)

lectrical conductivity model

ρthn f

ρhn f
=

σs3+2σhn f −2(σhn f −σs3 )φ3

σs3+2σhn f +(σhn f −σs3 )φ3

,
ρhn f

ρn f
=

σs2+2σn f −2(σn f −σs2 )φ2

σs2+2σn f +(σn f −σs2 )φ2

, (9)

thermal conductivity model

kthn f

khn f
=

ks3 + 2khn f − 2(khn f − ks3)φ3

ks3 + 2khn f + (khn f − ks3)φ3
,

khn f

kn f
=

ks2 + 2kn f − 2(kn f − ks2)φ2

ks2 + 2kn f + (kn f − ks2)φ2
, (10)

kn f

k f
=

ks1 + 2k f − 2(k f − ks1)φ1

ks1 + 2k f + (k f − ks1)φ1
.

The effective properties of the ternary-hybrid nanofluid are modeled using nested mixing
rules, consistent with prior hybrid nanofluid studies. The density, specific heat, viscosity,
thermal conductivity, and electrical conductivity are given in Equations (7)–(10). These
relations assume dilute suspensions without interfacial resistance, and they reduce to the
base fluid properties when φi → 0. For clarity, all property formulas are consolidated here
to aid reproducibility.

Utilizing the similarity transformation,

u = ax f ′(η), v = ayg′(η), w = −√av f ( f (η)− g(η), η = z
√

a
vz

, θ =
T − T∞

Tf − T∞
. (11)

The former Equtions (1)–(4) are transformed into:

f ′′′ =
x22

x11

[
f ′2 − ( f + g) f ′′

]
− x33

x11
M2 f ′ − Da f ′ = 0, (12)

g′′′ =
x22

x11

[
g′2 − ( f + g)g′′

]
− x33

x11
M2g′ − Da g′ = 0, (13)

(x55 + Rd)θ′′ + x44Pr( f + g)θ′ + Pr R θ = 0. (14)

Thus, f ′ denote the horizontal velocity component, g′ denote the vertica velocity component
and θ the temperature distribution, respectively.
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The constrains and boundary conditions are

f ′(0) = 1, f (0) = 0, g′(0) = S, g(0) = 0,

θ′(0) = −
k f

kthn f
Bi(1 − θ(0)), (15)

f ′(∞) → 0, g′(∞) → 0, θ(∞) → 0,

and
uthn f

u f
= x11,

ρthn f

ρ f
= x22,

σthn f

σf
= x33,

(ρcp)thn f

(ρcp) f
= x44,

kthn f

k f
= x55, (16)

The different here consideres parameters are:

• Magnetic Parameter: M =
σB2

0
aρ f

• Biot value: Bi =
h
k f

√
v f
a

• Prandtl ratio: Pr =
v(ρcp) f

k f

• Velocity Ratio Parameter: S = b
a

• Darcy numbers: Da =
v f

aK∗

• Radiation Parameter: R = 16σ∗T3
∞

3k∗k f

• x-wall stresses: C fx = u
ρ∞v2/2

(
∂u
∂z

)
z=0

• y-wall stresses: C fy = u
ρ∞v2/2

(
∂v
∂z

)
z=0

• Nusselt number: Nux = − x
Tf −T∞

kthn f
k f

(Tz)z=0 + (qr)z=0

Applying the similarity transformation from Equation (11) one finds

√
RexC fx = f ′′(0),

√
ReyC fy = g′′(0), Nuz(Rex)

− 1
2 = −

(
kthn f

k f
+ R

)
θ′(0), (17)

with the two Reynolds numbers Rex = ax2

v f
and Rey = by2

v f
in horizontal and vertical

direction, respectively.

3. Solution Methodology and Results
In this study we introduce an innovative machine learning (ML) approach to analyze

mean variability and proposes a hybrid platform for solving nonlinear (PDEs). These PDEs
are applied to optimize thermal fluid dynamics in THNF flow over a stretched surface.
The process begins with substituting a specific set of transforms with generalized spline
expressions, adjusted using fine-tuning parameters. Next, a computational framework
is developed in Python, leveraging the finite difference method to solve the resulting
(ODE) system.

For reproducibility, the following numerical and AI details are provided. Governing
ODEs were solved using SciPy’s solve_bvp with tolerance 10−8 on a uniform grid of
400 points; mesh refinement (200–600 nodes) confirmed domain independence at η∞ = 10.
The AI training employed a Levenberg–Marquardt neural network (LMFA) with 70/15/15
split. Inputs were normalized via min–max scaling. The loss function was Mean Square
Error (MSE); Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are reported
in Table 3. Damping factor µ was initialized at 10−3 and adaptively updated. Training
stopped upon achieving validation error < 10−6 or after 1000 epochs. Pseudo code, solver
and scripts have been deposited at Zenodo [38] for transparency and reuse.

The ODE system was solved numerically using a finite-difference scheme in
Python (SciPy). These solutions were used to generate training datasets for the Lev-
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enberg–Marquardt feed-forward neural network (LMFA). The network was implemented
with 10 hidden neurons, a training/validation/testing split of 70/15/15, and error conver-
gence down to 10−6–10−9. This surrogate model enables efficient parametric sweeps once
trained, while maintaining consistency with the baseline numerical solver.

Python is employed to calculate velocity, temperature, and entropy for THNF and
HNF cases, with results plotted and compared against AI-generated outputs. Additionally,
Python facilitates data transfer to MATLAB, where the neural network model is applied.
The AI technique utilizes the Levenberg-Marquardt Neural Network Algorithm (LMFA), a
self-learning method. The algorithm is developed with a data partitioning strategy, allocat-
ing 70% for training, 15% for validation and testing each. In the current research we explore
three factors, horizontal and vertical flow velocity, as well temperature, while we investigat
the influence of five critical parameters: Magnetic parameter, velocity ratio, porosity pa-
rameter, radiation parameter and retardation factor. The neural network model comprises
a 10-neuron computation layer followed by a 6-neuron output layer. The impact of three
distinct values for each parameter influencing caloric and momentum change behavior
across the modified wall boundary is analyzed. Figure 4 presents MATLAB-generated dia-
grams detailing the embedded data processing layout, while Figure 5 illustrates the neural
network’s internal architecture, including embedded weight functions and the progression
of epoch treatments. The parametric values used in the computations are summarized in
Tables 1 and 2, with all other variables and coefficients considered without assumptions.
The nondimensional numbers utilized in the computational analysis are chosen based on
various physical characteristics and conditions, providing a comprehensive understanding
of system behavior. This selection enables generalization of the findings and supports the
design and optimization of real-world applications. Three variations of each parameter
are analyzed to observe overall trends in THNF and HNF behavior. Numerical outputs
generated using AI and Python are integrated into the results section for comparison
and validation.

Table 1. Thermophysical properties of conventional liquid and nanoparticles.

Physical Properties Blood MWCNT Gold Silver

cp (J/kg K) 3617 796 129.1 235
ρ (kg/m3) 1050 1600 19,300 10,500
κ (W/mK) 0.52 3000 318 429

σ (S/m) 1090 105 4.52 × 107 3.6 × 107

φ 0.01 0.01 0.01 0.04

Table 2. Effective thermophysical parameters.

Parameter Value

µtn f 0.0045
ρtn f 1608.4272
σtn f 1247.1246
ctn f 2305.4235
ktn f 0.6206

This article presents training plots, fitness curves, error histograms, regression analysis,
and performance assessments of the AI computation model, depicted in Figures 6–12.
The different graphs showcase the influence of essential factors, including the Casson
parameter, peak point characteristics, and parameters related to transient and stretching
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surfaces, on flow rate. Furthermore, the temperature profile is illustrated through graphical
representations of the Prandtl number.

Additionally, the variations of influencing factors are summarized in Table 3 for
all scenarios.

Table 3. Numerical variations of parameters across various considered scenarios S-1 to S-7.

Scenarios Cases Parameters
M Da S R Pr Rd

S-1 1 0.1 0.2 0.1 0.3 0.1 0.5
Variation 2 0.4 0.2 0.1 0.3 0.1 0.5
of M for 3 0.7 0.2 0.1 0.3 0.1 0.5

F′(η) 4 1.1 0.2 0.1 0.3 0.1 0.5

S-2 1 0.7 0.2 0.1 0.3 0.1 0.5
Variation 2 0.9 0.2 0.1 0.3 0.1 0.5
of M for 3 1.1 0.2 0.1 0.3 0.1 0.5

G′(η) 4 1.3 0.2 0.1 0.3 0.1 0.5
S-3 1 0.2 0.3 0.1 0.3 0.1 0.5

Variation 2 0.2 0.6 0.1 0.3 0.1 0.5
of Da

for 3 0.2 0.9 0.1 0.3 0.1 0.5

F′(η) 4 0.2 1.2 0.1 0.3 0.1 0.5

S-4 1 0.2 0.3 0.1 0.3 0.1 0.5
Variation 2 0.2 0.6 0.1 0.3 0.1 0.5

of Da
for 3 0.2 0.9 0.1 0.3 0.1 0.5

G′(η) 4 0.2 1.2 0.1 0.3 0.1 0.5

S-5 1 0.1 0.2 0.8 0.3 0.1 0.5
Variation 2 0.1 0.2 1.0 0.3 0.1 0.5
of S for 3 0.1 0.2 1.2 0.3 0.1 0.5
G′(η) 4 0.1 0.2 1.4 0.3 0.1 0.5

S-6 1 0.1 0.5 0.8 0.1 2.5 0.9
Variation 2 0.1 0.5 0.8 0.2 2.5 0.9
of R for 3 0.1 0.5 0.8 0.3 2.5 0.9

θ(η) 4 0.1 0.5 0.8 0.4 2.5 0.9

S-7 1 0.1 0.5 0.8 0.2 1.0 0.1
Variation 2 0.1 0.5 0.8 0.2 1.0 0.3

of Rd
for 3 0.1 0.5 0.8 0.2 1.0 0.6

θ(η) 4 0.1 0.5 0.8 0.2 1.0 0.9

Table 4 highlights the convergence parameters and mean square errors generated by
LMFA. The method’s accuracy and precision are evident from the errors ranging from 10−9

to 10−10, along with the number of epochs and Mu and gradient grids spanning 10−7 and
10−9, respectively. The flow chart presented in Figure 3 provides a visual representation of
the entire computational process.
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Table 4. Mathematica Dataset Convergence Parameters.

Scenarios M.S.E. Data Grids Gradient Mu Closing T/s
Trainung Validation Testing Grids Epoch

10−10 10−10 10−10 10−9 10−8 10−8

S1 2.21 3.52 3.62 0.0002.21 9.97 1 432 0.1
S2 14.9 46.7 60.4 1.49 8.55 0.01 24 0.0
S3 2.09 3.51 3.43 2.09 9.95 1 411 0.1
S4 21.5 50.1 30.9 21.5 9.98 1 238 0.1
S5 1.49 14.1 2.14 1.49 9.95 1 208 0.1
S6 12.5 30.4 27.6 12.5 9.84 1 202 0.0
S7 1.07 1.55 2.01 1.07 10 0.1 620 0.1

Figure 4. LMFA neural diagram.

Figure 5. Schematics of the neural network’s internal architecture.
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(c) (d)

(b)(a)

(e) (f)

(g)

M

Figure 6. Results of horizontal velocity component F′(η) for scenario S-1 (Table 3) with variation of
Magnetic Parameter (M). Shown are (a) Performance state for F′(η); (b) E.H for F′(η); (c) Fitness
state for F′(η); (d) Training state for F′(η); (e) Solution of THNF for F′(η); (f) Error Profile of THNF
for G′(η); (g) Regression Analysis of THNF for F′(η).
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(c) (d)

(b)(a)

(e) (f)

(g)

M

Figure 7. Results of vertical velocity component G′(η) for scenario S-2 (Table 3) with variation of
Magnetic Parameter (M). Shown are (a) Performance state for G′(η); (b) E.H for G′(η); (c) Fitness
state for G′(η); (d) Training state for G′(η); (e) Solution of THNF for G′(η); (f) Error Profile of THNF
for G′(η); (g) Regression Analysis of THNF for G′(η).
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(c) (d)

(b)(a)

(e) (f)

(g)

Da

Figure 8. Results of horizontal velocity component F′(η) for scenario S-3 (Table 3) with variation of
Darcy Number (Da). Shown are (a) Performance state for F′(η); (b) E.H for F′(η); (c) Fitness state for
F′(η); (d) Training state for F′(η); (e) Solution of THNF for G′(η); (f) Error Profile of THNF for F′(η);
(g) Regression Analysis of THNF for F′(η).
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(c) (d)

(b)(a)

(e) (f)

(g)

Da

Figure 9. Results of vertical velocity component G′(η) for scenario S-4 (Table 3) with variation of
Darcy Number (Da). Shown are (a) Performance state for G′(η); (b) E.H for G′(η); (c) Fitness state
for G′(η); (d) Training state for G′(η); (e) Solution of THNF for G′(η); (f) Error Profile of THNF for
G′(η); (g) Regression Analysis of THNF for G′(η).
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(c) (d)

(b)(a)

(e) (f)

(g)

S

Figure 10. Results of vertical velocity component G′(η) for scenario S-5 (Table 3) with variation of
Velocity Ratio Parameter (S). Shown are (a) Performance state for G′(η); (b) E.H for G′(η); (c) Fitness
state for G′(η); (d) Training state for G′(η); (e) Solution of THNF for G′(η); (f) Error Profile of THNF
for G′(η); (g) Regression Analysis of THNF for G′(η).
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(c) (d)

(b)(a)

(e) (f)

(g)

R

Figure 11. Results of θ(η) for scenario S-6 (Table 3) with variation of Radiation Parameter (R). Shown
are (a) Performance state for θ(η); (b) E.H for θ(η); (c) Fitness state for θ(η); (d) Training state for
θ(η); (e) Solution of THNF for θ(η); (f) Error Profile of THNF for θ(η); (g) Regression Analysis of
THNF for θ(η).
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(c) (d)

(b)(a)

(e) (f)

(g)

Rd

Figure 12. Results of θ(η) for scenario S-7 (Table 3) with variation of Retardation factor (Rd). Shown
are (a) Performance state for θ(η); (b) E.H for θ(η); (c) Fitness state for θ(η); (d) Training state for
θ(η); (e) Solution of THNF for θ(η); (f) Error Profile of THNF for θ(η); (g) Regression Analysis of
THNF for θ(η).
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4. Discussion
4.1. Model Validation

In order to validate the used model several consistency checks were carried out:

1. Limiting cases: The model recovers Newtonian single-phase blood when ϕi → 0.
2. Parameter realism: The chosen ranges of Bi, Pr, M, Da, and R align with experimentally

and numerically reported values in biomedical and engineering contexts [31].
3. Domain truncation: Increasing η∞ from 10 to 15 did not affect velocity or temperature

profiles, confirming domain adequacy.
4. Dual-solution probe: In our study, we used the Python bvp_solver to test for mul-

tiplicity by employing different initial guesses, mesh refinements (200–600 points),
and extended computational domains (η∞ = 10 to 15). Across all parameter ranges
considered (bidirectional stretching, a,b > 0), the solver consistently converged to a
unique branch.

The Figures 6–12 illustrate the main results of the current study. They are subdivide as
follows. Subplot (a) shows the performance of training, testing and validation for THNF
flow using LMNA by uzing the Mean Square Error. (b) presents the error histograms of
Python-LMNA evaluation of the THNF flow. (c) gives the fitness analysis of Python-LMNA
evaluation of the THNF flow. (d) presents the state transition dynamics. (e) illustrates
the variation of the velocity profile F′(η), G′(η) or the temperature distribution θ(η),
respectively, with variation of corresponding control parameter. (f) gives the corresponding
error profile. (g) provides the regression analysis of LMNA for THNF flow over stretched
porous surface.

As an internal validation, we verified that the model reduces to base fluid behavior
when nanoparticle volume fractions vanish, and recovers classical nonporous, nonmagnetic,
and nonradiative cases when the respective parameters are set to zero. These limiting cases
confirm internal consistency of the formulation.

As mentioned before the Subplot (a) (in Figures 6–12) provides an overview of the
performance of the code. A comparison between testing and validation curves for profiles
of velocities F′(η), G′(η) and temperature, θ(η) are shown. In any case, a clear overlapping
of training, testing and validation curves is identified. Test-Training-Validation (TTV)
curves are represented in blue, green and red, respectively. The best validation check is
represented by a dotted horizontal line. Overlapping or parallel course of curves depicts
ideal condition of training and evident for best outputs. In all cases these errors are below
10−4 and down to 10−6.

Subplots (b) in Figures 6–12 represent various error histograms (EHs) in terms of
mean-square errors (MSEs) for different scenarios (S-1 to S-7). These histograms plot the
distributions of the MSEs in each case to obtain an idea about the variations of the errors
with respect to the situations. Each histogram gives the frequency of occurrence of error
values within a specific bin. The colour coding of the bars is as follow: blue for the first,
red for the second, and green for the third set of TTV data. These bars identify how often
certain error values occur within their corresponding bins in each TTV dataset. High bars
for lower error values indicate better performance, meaning more frequent small errors,
and high error values with high bars mean the reverse-worse performance, characterized
by more frequent large errors. Comparing the histograms from scenarios S-1 through S-7
conveys how various aspects drive the shape of error distributions. This comparison will
show which of the scenarios produce lower or higher errors and will, hence, clearly put
forward, through the distribution of the MSEs, the performance of different scenarios. To
guide the eyes, also a vertical yellow line is drawn at the zero-error point; the height reflects
the maximum MSE as seen in the histogram. This line also serves as a point of reference
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since it marks the best-case scenario where the error is zero. The generated data are spread
over 20 bins, which are very useful in analysing the spread and frequency of the errors.
The different bars of the TTV data represent different TTV processes. The height of the
different bars above indicates the number of iterations for which the error is within the
range represented by that bin. The vertical axis indicates the number of iterations for a
given value of the error, while the horizontal axis gives the target-output difference, which
is a measure of how far the output values are from the target values ? this is something
very close to the error magnitude.

Further insight for the error analysis by zooming in on the AI evaluations of the
LMFA training’s fitness is provided in subplots (c) in Figures 6–12. These indicate the
possible representative fitness curves of the LMFA algorithm with high accuracy in velocity
and temperature trend predictions. The fitness curves perfectly match the general trend
and trajectory for both parameters, therefore portraying a high level of precision by the
AI-generated solutions, as compared to the Python-generated solutions. None of the
points on Testing, Training and Validation for these coloured crosses on the plot deviate
from the trajectory and thus perfectly depict computational convergence of the LMFA. This
alignment thus shows that the LMFA algorithm is very well-trained to optimal performance,
producing near-minimal errors, which is shown by the closeness of the fit between the
predicted values and the actual values with respect to velocity and temperature.

Finally, the overall scenario of regression analysis for TTV outputs from different
processes to estimate the model performance is presented in subplots (g) in Figures 6–12.
The plots of regression compare AI-based outputs with numerical targets; the unity line
(diagonal) stands for perfect convergence. This unity line is only a reference and shows
where AI outputs would fall if they were an exact match to the targets.

4.2. Velocity Profiles F′(η) and G′(η) (Scenario S-1 to S-5)

Figures 6e and 7e illustrate the variation of the velocity profiles F′(η) (horizontal
velocity component) and G′(η) (vertical velocity component) with different values of the
magnetic parameter M. Considered values are M = 0.1, 0, 4, 0.7, 1.1. General observation is
that enhancing M results in minoring the velocity profiles F′(η) and G′(η) or otherwise, the
velocity profile increases as the magnetic parameter decreases. Qualitative, one observes
an almost linear dependence on G′(η) (Figure 7e), while the effect on F′(η) (Figure 6e)
is clearly non-linear. Here the separation between the different curves increases with
augmentation in M before for larger values the curves harmonize/come together when
η approaches to end of domain, to be stable. This widened velocity profile is caused by
the strong surface tension gradient, thermal difference and interaction of nanoparticles
within boundary layer. large parameter η diminishes the influence due to thermal diffusion,
reducing forces and stabilizing particles interaction, leads to monotonous convergence. In
addition values of F′(η) are about one order larger than G′(η). The origin of the decreasing
behavior is the fact that a weaker magnetic field imposes less resistance to the fluid’s motion.
The corresponding error plots (Figure 7f) for the differences between Python-generated and
AI-generated outputs in the profiles differs from null values, which validates AI-results.

The influence of variation in Darcy numbers Da on the velocity profiles F′(η) (hor-
izontal) and G′(η) (vertical) are presented in Figures 8 and 9. Increasing Da causes the
horizontal velocity profiles F′(η) to decrease (Figure 8e). With increasing η, one observes a
general reducing velocity trend whereby the velocity gets closer to its minimum value of
zero, which means that fluid slows down as it gets distant from the reference point. Also,
the values of higher Da lead to the decreasing velocity of the fluid, proving absorbing hin-
drance in mobility of fluid. In contrast to this, the vertical velocity profiles G′(η) (Figure 9e)
just behave in opposite manner. Here lower Darcy numbers Da diminish the vertical veloc-
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ity profile G′(η) indicating that specific distribution of the velocity components suggests
the preference to the vertical velocities under certain conditions. This increased value of
the vertical velocity component for an increment of Da can be understood by the fact that
higher Da is associated with lower flow resistance, hence, greater velocities, including in
the vertical direction. For both velocity conponents F′(η) and G′(η), the relative value by
which the curves are separated decreases and the degree of separation minimizes towards
the end of the domain where the flow approaches a state of stasis or equilibrium.

Figure 10e illustrates (scenario S-5) how the vertical velocity profile G′(η) varies with η

for different values of the velocity ratio parameter S. As S increases, the velocity difference
between the free stream and the wall becomes more and more significant, leading to a
steeper G′(η) gradient. This indicates stronger flow acceleration near the wall and increased
shear effects within the boundary layer.

4.3. Temperature Profiles θ(η) (Scenario S-6 and S-7)

Increasing the thermal radiation coefficient (R) and the retardation parameter Rd has
a similar effect on the temperature profile θ(η) as illustrated in Figures 11e and 12e. The
corresponding values of θ(η) become reduced.

Figure 11e illustrates that the decrease in the temperature profile θ(η) with variation
in Rd is largest at 1.5 ≲ η ≲ 2. Larger values R cause a faster heat loss, leading to steeper
temperature gradients, demonstrating that radiation significantly enhances cooling in
the system.

The temperature profile θ(η) also become smaller with increasinng retardation param-
eter Rd as presented in Figure 12e. It holds a capacity to affect the heat retention of the
system as it counteracts thermal decay. This means that when Rd is high heat dissipation is
retained for a longer time inside the medium and near the subject surface and this results
in high temperature gradient within the fluid. This is especially noticeable in the systems
characterized with convective and radiative heat transfer modes.

5. Conclusions
This article centers on the study of THNF flow over a stretchable porous sheet, a

phenomenon with significant applications in biomedical engineering and applied sciences.
A Mathematica-based algorithm has been employed to produce a numerical dataset, com-
plemented by AI-driven solution graphs analyzed through the Levenberg Marquardt
Algorithm (LMFA) approach. Comprehensive comparison and training plots in various
formats are presented, offering detailed insights into the behavior of THNF flow over
stretchable skin.

Thus, as a general outcome of this work, it can be concluded that a Ternary-hybrid
nanofluid can have useful applications in thermodynamic systems especially as it appears
that the behavior of the manufactured fluid can be more effectively controlled. Therefore,
the performance of Ternary-HNF is substantiated with great optimizing capability in heat
and mass transfer, which has been revealed in this paper. Moreover, we have shown that
considering machine learning (ML) techniques as novel approach with the use of LMFA
to train neural network, produces cost and time efficient optimized results. This can be
seen as a major step forward in academic advancement and practice with the simulations
and predictions in intricate systems in general. We hope that our work will inspire other
researchers, experimentalists, mathematics, and numerical simulations to work on the
challenges of economics and stability, which can introduce extended opportunities for the
line of product application.
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Abbreviations
The following abbreviations are used in this manuscript:

UCM Upper-convected Maxwell
CNT Carbon nanotubes
MHD Magnetohydrodynamics
ML Machine learning
ODE Ordinary differential equation
PDE Partial differential equation
LMFA Levenberg-Marquardt Feedforward Algorithm
AI Artificial intelligence

Nomenclature
Parameter Description Parameter Description
(x,y) position coordinate Bi Biot value
Uw velocity along x-direction Pr Prandtl ratio
Vw velocity along y-direction S velocity ratio
Tf temperature of the fluid Da porosity characteristics
B0 Tesla value R radiation parameter
K∗ absorbing medium C f x, C f x local wall stresses
Q0 external heat Nu Nussel number
qr radial flux Re Reynolds number
T∞ wall temperature Q heat source/skin characteristics
h thermal exchange rate Rd Retardation factor
µ dynamic viscosity n f nanofluid
σ electrical conductivity hn f hybrid nanofluid
ρcp heat capacity thn f Ternary hybrid nanofluid
k heat conduction rate M magnetic parameter
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