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Machine learning investigation of
marangoni convection in hybrid
nanofluids with Darcy-Forchheimer

Hamid Qureshi!, Sebastian Altmeyer?* & Muhammad Zubair?

This research utilizes machine learning to investigate Marangoni convection in a hybrid nanofluid
(MnZnFe;04 + NiZnFe;04/H>O) within a Darcy-Forchheimer porous framework. We conduct
both qualitative and quantitative assessments of heat transfer, mass transfer, and viscous dissipation
irreversibility during the flow. Numerical results are obtained using a Python finite difference
algorithm, after which MATLAB is employed for Al-based analysis. Additionally, the Levenberg-
Marquardt neural network algorithm is trained and utilized. Our findings show that fluid velocity
diminishes as the inverse Darcy parameter, Marangoni ratio, and Forchheimer parameter increase.
Moreover, the temperature rises with the Eckert number and Prandtl ratio. As concentration increases,
activation energy and Schmidt parameter also grow. Mean Square Error for the results reaches up to
10 across various impacts. The findings indicate that the LMNN model fits well with low error in
training, testing and validation dataset. Notably, the results indicate that this hybrid Al-based method
could be used as a credible surrogate of the intricate simulations in porous media heat transfer tasks
providing a computationally effective device of real-time analysis in engineering.

Keywords Artificial intelligence, Machine learning, Levenberg Marquardt neural-network algorithm,
Hybrid nanofluid, Darcy Forchheimer, Marangoni ratio, Convection

The field of heat transfer is garnering increasing attention due to two primary reasons: the pursuit of understanding
its foundational principles and the industrial opportunities offered by conduction, convection, and radiation to
improve thermal management systems. Considerable efforts are aimed at discovering methods to boost heat
transfer efficacy, as it plays a pivotal role in designing and executing projects. Convective flow! involves fluid
motion where heat transfer arises from changes in density and temperature. In this mechanism, warmer, lighter
fluid rises while cooler, denser fluid sinks, creating a circulation that enhances heat distribution?. This process
is essential to numerous natural and industrial phenomena, including global weather systems, ocean currents,
and cooling of electronic devices. Figure 1 depicts various sector-wide applications. Mastery of convective flow
is essential for scientists and engineers focused on refining climate models, enhancing industrial processes, and
developing sustainable heating and cooling solutions. Thermocapillary convection, known also as Marangoni
convective flow>?, emerges in fluid dynamics when surface tension varies along an interface, typically owing
to temperature or concentration differentials. This phenomenon is crucial in numerous natural and industrial
contexts, like crystal growth, microfluidic systems, and thin film production. The fluid shifts from regions of
low to high surface tension due to non-uniform surface tension, producing intricate flow patterns that can
either improve or obstruct heat and mass transfer. Thus, managing and adjusting Marangoni convective flow is
essential to optimizing results in fields such as materials science and biotechnology.

Nanofluids®? or ferrofluids*~ are a novel way to enhance thermal properties and efficiency of heat transfer.
They are developed through the inclusion of nano-meter-sized particles (less than 100 nm) in a base liquid carrier
fluid. These particles can significantly improve the thermal conductivity and stability of common fluids, e.g., oils,
water, or ethylene alcohol”. Hybrid nano-fluids®, a modification of traditional nanofluids, are fluids that contain
two or more different types of nanoparticles. Their performance is influenced by both particle size and base fluid,
leading to a reduction in thermal conductivity; Meanwhile, physical properties such as surface tension or flow
field may also fall within what is allowed of both sides’ ranges for outperforming single-component nano-fluids
in many new fields. In particular, the often-detected disadvantages due to viscosity may be eliminated in many
cases. These advantages are caused by the fact that there are two assorted sizes and composition rates involved.
The influence between each other is small and therefore several disadvantages are overcome, especially when
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Fig. 1. Applications of Nanofluids®.

considering limitations analogous to Moore’s Law (empirical law predicting that microchip transistor counts
would double every two years and therefore boosting computing power while lowering costs) in computational
scaling. Hybrid nanofluids exhibit superior thermal properties compared to traditional coolants and lubricants.

This study explored optimal combinations and concentrations of nano-fillers to develop hybrid nano-
fluids aimed at enhancing heat transfer performance. Ahmad et al. investigated nonlinear hybrid nano-fluids’,
while Buongiorno!? introduced a two-phase thermal energy transport model based on nano-fluids. Tiwari and
Das!! proposed a mathematical model that factors in the thermophysical properties and volumeric fraction
function of nanoparticles. Pordanjani et al.!? offer a critical review of nano-fluids, examining their physical
attributes, applications in thermal systems, environmental concerns, and heat transfer effectiveness, alongside
potential environmental issues and future research paths. Liu et al.'*> employed numerical techniques to study
bio-convective phenomena in rate-type nano-fluids. Various studies highlight the potential and computational
models of nano-fluids across engineering fields, underscoring their ability to enhance efficiency'*""’. Significant
research contributions to nano-fluidic systems have been made by J. Wang'®, A. I. Alsabery'?, Khan®, S. K.
Patel’!, A. M. Saeed??, and S. Li**. Recent analyses have focused on nanofluid and hybrid nanofluid flows,
evaluating heat and mass transfer under diverse physical phenomena like radiation, magnetohydrodynamics,
and chemical reactions!®!#?4-32, Several numerical studies and review papers have addressed nanofluid stability
and thermal performance enhancement through hybrid nanoparticle use?**-, with similar models being
numerically investigated in**3°. Shehzad et al.*® examined the convective magnetohydrodynamic (MHD) flow of
a hybrid nano-fluid contained by an elliptic porous wall, analyzing fluid dynamics and heat transfer’s impact on
porosity and magnetic fields. Radhika®” utilized advanced mathematical modeling and simulation to analyze the
improved heat transfer properties of dusty fluids with suspended hybrid nanoparticles over a melting surface.
Collectively, these studies underscore the potential of hybrid nano-fluids for boosting heat transfer and fluid
dynamics in engineering applications, with detailed numerical analyses under various physical conditions like
thermal radiation!®%?%25, MHD effects, and different geometrical and boundary conditions?”-2%36-38-40,

To date, in the field of computational fluid mechanics, researchers mostly focus on deterministic numerical
or analytical techniques. However, recent developments open the door to comparatively less explored stochastic
numerical computing solvers based on artificial intelligence (AI) approaches, particularly nano-fluidic models.
The computational capabilities of stochastic numerical computing solvers based on Al with neural networks to
solvelinear and non-linear differential equations are used to address different problems arising in several domains.
In the modern era, Shah et al.*! enhanced predictive accuracy in complex fluid scenarios by implementing a
neural network-based evaluation technique for the numerical analysis of the flow of an Eyring-Powell magneto
nano-fluidic structure. Different works have proven how to use computational intelligence methods to analyze
different fluid models, such as those involving convective flows, magneto-nano-fluids, and nano-fluids. Several
works also analyzed intricate fluid behavior and optimized design parameters in engineering applications**~%°.
A unified trend with a focus on applying sophisticated computational techniques can be seen. This includes
machine learning and stochastic networks to analyze and optimize fluid flow models involving bio-convection
and nano-fluids. This reflects the growing significance of computational intelligence in a variety of engineering
applications. 194968, Gowtham and Keerthi**~>3 investigated third-grade and hybrid fluids for various geometries.
In recent years, the effectiveness of neural-network-based methods to understand complex non-Newtonian,
hybrid nanofluids in a wide variety of physical regimes, such as Kelvin Voigt fluid modeling*, hybrid nanofluids
transport in converging/diverging channels®®, Arrhenius activation energies and thermal radiation effects™,
hydromagnetic convection in porous channels®’, and ternary hybrid nanofluid particle deposition®®, have been
shown. Artificial neural networks based on Levenberg—Marquardt have recently been used to model a wide
variety of non-Newtonian and nanofluid flows, such as transient micropolar nanofluid microchannel flow>?,
Casson-Carreau nanofluid transport over curved surfaces®, radiative Casson fluid flow with couple stresses®!,
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Prandtl fluid dynamics over stratified geometries®?, and optimization of dusty-trihybrid nanofluid microchannel
flows using ANOVA-Taguchi methods®. Recent reports have emphasized some of the practical uses of nanofluid
systems, such as ionic water/ graphene nanofluids in solar panels®, conjugate mixed convection of hybrid
ethylene glycol nanoparticles with Joule heating®, optimization of heat transfer in MWCNT-AI1203 hybrid
nanofluids®, and graphene oxide/vacuum residue nanofluids in enhanced oil recovery®’.

The flow system features a two-dimensional steady-state setup in which a hybrid nanofluid interacts with
a porous surface that has distinct temperature and concentration regions. The model requires boundary
conditions that include fully adhering velocity and specified thermal and mass transfer rates. The integration
of dual nanoparticles (MnZnFe;O4 + NiZnFexO4/H>0) together with Al-driven stochastic modeling
represents the novelty because it fills the prediction gaps for thermocapillary-driven flows in porous media.

The primary components of the research methodology are outlined as follows:

o Al-driven methods were utilized to generate tailored outputs for numerical studies within the Darcy-Forch-
heimer model framework.

o The mathematical model, which is generally non-linear, consists of coupled partial differential equations
(PDEs). Through the application of similarity variables, these PDEs are converted into a set of equivalent
non-linear ordinary differential equations (ODEs).

o An in-depth analysis and study of the model were conducted using a Python algorithm. Key parameters
examined include the Darcy parameter, Marangoni fraction, Forchheimer parameter, Eckert ratio, Prandtl
number, energy characteristic, and Schmidt number.

« The proposed Python-based machine learning computational approach was validated via extensive testing,
training, and validation processes, modeling fluid behavior under different conditions, and benchmarking
against existing data.

o The Mean Squared Error (MSE) merit function was employed to verify the method’s effectiveness in address-
ing the model, supplemented by analyses of histograms and convergence plots.

o Comprehensive Training, Testing, and Validation (TTV) of the convergence parameter of LMNA across var-
ious stages has been undertaken.

Comparison with previous reviews

Initiating with a recognition of early research on Marangoni convection and hybrid nanofluids, particularly
those utilizing computational approaches, is essential. For instance, it’s possible to cite approaches by Ahmad
et al. and Buongiorno et al.”!°, among others, which were regarded in their studies but not directly compared.
Highlight the methodological distinctions in developing a Darcy-Forchheimer porous medium concentrating
on MnZnFe,0, and NiZnFe,O, nanoparticles, which have not been explored in other research.

Previous studies have employed neural networks, genetic algorithms, and hybrid AI solutions to forecast
nanofluids’ thermal and mass transfer properties45‘48, yet none have integrated MnZnFe,0,-NiZnFe,O, hybrid
nanoparticles within a Darcy-Forchheimer porous medium influenced by Marangoni convection. Furthermore,
prior machine learning applications were confined to limited parametric scopes, whereas this research
symmetrically assesses the Darcy, Forchheimer, Prandtl, and Eckert numbers under thermocapillary conditions.
Additionally, the ferrite-based nanoparticles offer improved magneto-thermal properties, setting our study apart
from those focusing on oxide-based nanofluids.

Identifying research gaps

This research seeks to examine the existing constraints in the investigation of Marangoni convection and the
novel applications of hybrid nanofluids that it intends to overcome. Unlike previous studies that have depended
heavily on deterministic numerical techniques, this research introduces a stochastic, Al-driven approach
focusing on probabilities and sensitivities. Highlight the specific parameters or conditions analyzed; for example,
how machine learning influences fluid dynamics through various thermophysical properties. This distinction
could illuminate ATs potential to address computational or modeling difficulties typically encountered in
conventional hybrid nanofluid studies.

Explicit contribution statement

The research reveals important findings regarding how the combined dependence of § and 1 influences heat
and mass transfer in hybrid nanofluids experiencing Marangoni convection. It recommends employing the
Levenberg-Marquardt Neural Network Algorithm to boost prediction accuracy. These findings set the stage
for further research into complex geometries, variable flow dynamics, and multi-phase phenomena, thereby
expanding the reach of our predictive models. The paper highlights practical applications, particularly in
microelectronics cooling, optimizing heat exchangers, and improving renewable energy systems.

Mathematical modeling

Governing equations

Consider the heat and mass transfer from a higher surface pressure to a lower surface pressure inside a hybrid
nanofluid. Here, we assume an incompressible, steady flow of a hybrid nano-fluid with a composition of
nanoparticles of Manganese Zinc Ferrite and Nickel Zinc Ferrite (MnZnFe;O04 + NiZnFe;O4) with water
as a base fluid, as an excellent dispersant, and non-toxic. These ferrites have enhanced magnetic properties and
thermal conductance. Entropy generation, viscous dissipation, and the impact of Darcy-Forchheimer permeable
medium are considered. Modeled equations based on the aforementioned assumptions are as follows’ 1.
References for Egs. (1) to (5), including further background information, can be found in®°.
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Boundary conditions
We use the following boundary conditions (BC) in space and temperature:

sz,T:TWToX2 when y =0 (6)
Uu=0,T—Tew =0,C —Co =0ify— (7)
o=00(1 =770 (T - Ts) (C - Cx)), (8)
with initially and more general
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A schematic illustration of the problem is presented in Fig. 2.

Here, y7 and ¢ are constants for temperature and concentration. s is Boltzmann number and surface
tension are represented by o. Activation energy is presented by E, . However, Tp, Ts0, Co and C'ss represents
reference and ambient temperature and concentrations, respectively. (pcp),,, » and knns shows heat capacity
and thermal conductivity of hybrid nanofluid while, ¢, is specific heat capacity. Chemical reaction rate ko and
permeability of porous medium K*. Mas diffusivity is symbolized by D, and dynamic viscosity is presented by
Whng- p is the density and (z,y) are the coordinates of the axis.

Similarity equations
In order to non-dimensionalize the governing equations and thus to transform the above system of PDEs into
a non-dimensionalized system of ODEs the following similarity variables are introduced (utilizing symmetries
and scaling properties):

_Vf g _ s _y _z T -T, _C—-Cx
u=LXP©w=TLX©. =4 X=7.00="75"00="75 0
Equation (1) is satisfied insignificantly, and the remaining Egs. (2)-(4) transform as follows:
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Fig. 2. Spatial Setup of the problem.
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Material p (’“9/ ma) Cp (J/ (kg Ky nKK)
H>O 997.1 4179 0.613
MnZn Fezo4 | 4700 1050 3.9
NiZn Fesoy 4800 710 6.3

Table 1. Thermo-physical properties of HNFs®>.

Parameter Relation
) v L2
Inverse Darcy coefficient B = &= o7
) Cp
Forchheimer parameter Fr= 7%
vf
Prandtl ratio Pr= En
vf
Schmidt parameter Sc= =n
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- . Eg
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Table 2. Thermo-physical parameters and their formulas®®. Note that o1 and o5 are volumetric concentrations
of each type of nano-solute.
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Accordingly, the new transformed BCs read:
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Thermo-physical properties and characteristics of significant parameters for NF and HNF are listed in Table.
13455, Moreover, significant dimensionless parameters and their relations which are involved in the Eqns. (11,
12, 13) and boundary conditions Eq. (14) are listed in Table 2.
Further, the dimensionless Skin Friction and Nusselt numbers are,
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Following the relations of Entropy and Bejan numbers in dimensionless form are,
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Some of the significant parameters and their relations are mentioned in Table 2.

Solution methodology

In this research, we employed an original approach for modeling Marangoni convection in hybrid nanofluids,
utilizing Python data generation enhanced by a MATLAB Levenberg-Marquardt backpropagation neural
network algorithm. While other methods may focus on the general utilization of built-in toolboxes, this
system enhances data preprocessing, parameter optimization, and model design in response to the difficult
thermophysical relations and disparate nanofluid movement. To reduce the over-fitting problem, cross-
validation was used to partition the data into training data (70%), validation data (15%), and test data (15%), and
early stopping was used to stop training when the model began to fit the noise. Such a measured incorporation
of tools and strategies enabled us to capture convective behaviors of reasonable complexity in more complex
hybrid nanofluids accurately, proving that our tailored approach to fluid dynamic modeling is not only efficient
but highly specific as well.

In the current study, we describe a novel approach to employing mean variability in the use of machine
learning. Thereby, we form a fused environment to compute nonlinear PDEs by developing an innovative fluid
flow model for improving HNF (MnZnFe204 + NiZnFe20O4 + H20) applications for Darcy Forchheimer
operating over a porous phase. The particular nano solutes investigated here are Manganese Zinc Ferrite and
Nickel Zinc Ferrite.

An implicit Crank-Nicolson finite difference scheme was used to discretize the governing PDEs, since it is
stable in stiff nonlinear systems. The grid independence was checked by testing 100, 150, 200, and 250 grid points;
after 200, the variations in Nusselt and Sherwood numbers were less than 0.5%. The Courant-Friedrichs-Lewy
(CFL) condition was used to ensure stability, and convergence was proclaimed when the successive iterations
met the condition of |human| phn + 1-phn|<10-6. Benchmark validation was done by recreating the results of
the analytical calculations (S =0, no nanoparticles) with an error less than 2%.

Initially, spline expressions with fine-tuned parameters approximate the transformed equations. In the
following, the obtained set of ODEs is utilized to generate a numerical dataset with the computational environment
of Python-SciPy, along with the finite difference algorithm for velocity, temperature, and concentration of HNF
(MnZnFe,O,+ NiZnFe,O,+ H,0) & simple NF (MnZnFe,O,+ H,0).

Following, the dataset is transformed and filtered in matrix form and sent to the MATLAB environment for
neural component handling by AI techniques. The Levenberg-Marquardt Neural Network Algorithm (LMNA)
is employed, which is exceptional for its self-learning mechanism. The performance of the algorithm is assessed
on the test dataset, which again is organized into three subsets: training, testing, and validation. The load for
these subsets is split into 70%, 15%, and 15%, respectively.

The Levenberg—Marquardt algorithm is an algorithm in nonlinear least-squares that is a combination of
gradient descent and Gauss—Newton methods and allows the rapid convergence of nonlinear problems. Here,
it has been driven by the relatively small size of the dataset as well as the requirement of high accuracy, where
LMNN has performed better compared to the traditional backpropagation. This method is stable and fast at the
same time, which is why it is very appropriate when considering complex transport processes in porous media.

The study examines eight conditions, including flow velocity, temperature, and concentration variation, and
analyzes eight major influencing parameters. For the neural network model, an inner computation layer with 10
neurons and an output layer with 6 neurons is created. Analyses of three values for each parameter concerning
the changes in both caloric and momentum across the modified wall boundaries are presented. Figure 3 depicts
the data processing layout of the embedded data analysis system (created in MATLAB).

Parametric integrated values in the computational procedure are summarized in Table 3, and other extensive
variables and coefficients are omitted through non-assumptions. Three versions of each variable are considered
to analyze the overall trend of variation in HNF and NE.

Details of Training, Testing, and Validation (TTV) of the convergence parameter of LMNA for the various
stages are listed in Table 4. It has a total of eight various situations accompanied by the MSE of TTV in columns
2-4 next to each of the situations. In columns 5-7, original output performance and slopes of landscape and step
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Fig. 3. Diagram of the Levenberg-Marquardt neural network algorithm (LMNA).

Parameters
Scenarios Cases | B |y |Fr |Ec |Pr |Sc |E |K
ol 1 020302 0220080202
Variation of 2 0.6 03 |02 0220080202
Bfor f1(n) profile 73 1.0 03 02 |02 ]20]08 |02 02
s 1 0310202 [02[2008]02]02
Variation of 2 0310602 0220 08]02]02
rfor 1 (n) profile 75 031002 [022008]02]02
s 1 0310202 [02]2008]02]02
Variation of 2 0310206 |02 20 08]02]02
Frfor f1(n) profile 73 0310210 [02]2008]02]02
o4 1 0310202 0020 08]02]02
Variation of 2 0310202 o520 08]02]02
Ecfor (n) profile 73 0310202 [10[2008]02]02
s 1 0310202 [03[0108]02]02
Variation of 2 0310202 03|06 |08]02]02
Prfor6 (1) profile 73 0310202 [03[1008]02]02
6 1 0101 o1 o1 o1 0101001
Variation of 2 010101 o1 o1 |e2]01]001
Scfor g () profile 75 010101 [01]01]03]01 |001
o 1 0510903 |03 16|13 01]01
Variation of 2 0510903 03|16 |1.3]06]0.1
Eforp (n) profile 5 050903 [03 1613 |10]01
s 1 090203 [03]16 09 |05]0.01
Variation of 2 09 0203 [03 |16 0905 ]0.06
Jefor ¢ (n) profile 73 09 0203 03|16 |09]05]0.10

Table 3. Numerical Scenarios of Darcy Forchheimer flow for several studied cases. Significant values are in
bold.

size grids are shown. Further, the number of iterations is presented in the penultimate column, while the last
column lists the duration of the iterations.

Table 5 shows the MSE of TTV ranges up to 107!! and agrees with other grid parameters. Computational
units are designed to process at the highest level of succinctness and precision. The visualization and graphs of
tabulated data are presented in the next section.

Even though LMNN networks are sensitive to overfitting in case of over-parameterization, in the current
work, the risk was reduced through limiting the number of hidden neurons, cross-validation, and tracking
validation errors. The fact that training and testing profile closely matched each other proves that the model was
applicable to unseen data.

The flow chart in Fig. 4 provides an overview of all stages in the computational procedure of the problem,
which are illustrated with different blocks. Starting from PDEs to final Al-based comparison outputs and error
plots.

Results and discussion
The graphical visualization of TTV of the Al algorithm holds fitness curves, MSE histograms, regression analysis,
performance, and training plots. A comparison of two competing fluids against thermophysical influences is
produced and made available for enhanced visualization, enabling a perfect understanding of the reason for
choosing HNF instead of NE. Numerical validation of the results is done by dropping all influences (set to 0)
except Pr and Sc as 0.1 (Table 5).

Figure 5, 6, 7, 8 and 9 illustrates the LMNA-TTYV profiles programmed by the MATLAB environment. These
diagrams are generated around target Python-gen data, capturing the errors in AI-gen outputs.
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MSE data
Scenario | Training | Validation | Testing Performance grids | Gradient grids | Mu grids | Closing epoch | T/sec
S-1 1.76x10710 | 2.26x10710 | 1.44x107'° | 1.76x1071° 9.96x107%8 1.00x107% | 302 01
S-2 3.99x10710 | 6.89x10710 | 5.18x10710 | 3.99x1071° 9.96x107%8 1.00x107% | 280 01
S-3 5.59x107!! | 7.60x10711 | 8.04x107!! | 5.59x107!1 9.99x107%8 1.00x10°% | 707 03
S-4 6.60x10710 | 9.34x10710 | 9.16x107'* | 6.60x1071° 9.96x107%8 1.00x107% | 252 01
S-5 1.26x107% | 3.50x107%° | 1.90x10°% | 1.26x107%° 9.95x107%8 1.00x107% | 503 02
S-6 4.82x10710 | 8.42x10710 | 9.36x1071 | 4.82x1071° 9.82x107%8 1.00x1071 | 404 01
S-7 1.79x10°% | 2.18x107% | 2.62x107%° | 1.79x10"% 9.94x107%8 1.00x107% | 522 02
S-8 2.43x10710 | 3.11x10710 | 5.19x1071° | 2.43x1071° 9.99x107%8 1.00x10°% | 144 01

Table 4. Convergence parameters for dataset.

Fr | 01 (%) | o | Python-generated £/ (0) | Al-generated £ (0) | Absolute error
0115 Nil | 1.4213395 1.4213113 0.0000282
0215 Nil | 1.3942365 1.3942208 0.0000157
03 |5 Nil | 1.3690062 1.3690011 0.0000051
0115 5% | 1.3163499 1.3163467 0.0000032
0215 5% | 1.2912994 1.2913070 0.0000076
0315 5% | 1.2679778 1.2679945 0.0000167

Table 5. Validation of results for initiating velocity.

Python-LMA Methodology

PDEs to ODEs ep
Transformation d

PYTHON / i o e

generation

Au/dx+dv/dy=0
® udu/ox+v du/dy = phnf/phnf
-(0"2u)/(9y"2) vhnf/Ku-Fur2

Filteration of Dataset
for embedding into [ ] M AT LA B
Matlab 4

/ Al-based LMNA setup
([ ] 3 S and repeating
computation cycles

Optimized Stochastic
Results and Errors
analysis 4

Fig. 4. Flow chart of problem evaluation and solving procedure.

In any case, Fig. 5 illustrates the three curves of TTV—Training (blue), Validation (green), and Testing (red)
overlays. The dotted line presents the best fit, starting from zero epoch to the maximum. The graphs of both input
and output variables in parallel curves stand for the actual change and are more apparent for the best values. The
number of the largest epoch is 707 for the validation of 1071, All the curves follow the same trajectory and crusts
and troughs of the dataset; thus, it confirms the computation of the neural network.

MSE oscillations in Fig. 5 occur at small x values based on the model’s fine-tuning phases, in which the
parameters and weights are being adapted. This is quite unexpected since the learning rate first induces
fluctuations and then produces a stable MSE. Moreover, when we have numerous parameters interrelating in
the Al-based approach, this might first complicate error sensitivity in the rate. These oscillations decrease as
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Fig. 5. TTV performance profile of LMNA.
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learning proceeds and become more similar across time as training continues, though of course, they are still
more pronounced in earlier phases of learning.

Figure 6 provides the respective Mean Squared Error (MSE) histograms related to the Training-Testing-
Validation (TTV) performance profile as Fig. 5 above. The histogram is a chart illustrating the distribution of
errors in each set of data i.e., training (blue), validation (green), and testing (red), with the yellow line running
upwards indicating the point of zero error. The dataset generated by Python has been divided into 20 equal bins,
where the TTV practices are well indicated in the bars. The plots on the horizontal axis represent the difference
between the target and the predicted output, and the vertical axis represents the frequency of the occurrence at a
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certain magnitude of error. It is possible to visually compare the distribution of errors on the various partitions of
the dataset using this visualization, which ensures that the LMNN model is free of overfitting since the training,

validation, and testing errors are tightly clustered around the zero-error line.

The fitness profile of the Levenberg-Marquardt Neural Algorithm (LMNA) and the error profile are
presented in Fig. 7. The crosses that were marked in the legend represent the various partitions of the dataset
(training, validation, and testing), which all have a similar trajectory. The consistency indicates that a good fit
of the LMNA has been attained, and it will approximate the numerical solution. The error curve presents slight
oscillations, as it should be, since the weights and biases adjust during training. These small variations also aid in
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Fig. 9. Al-based LMNA Solutions and Absolute-Errors (A.E.) of HNF vs NE.
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making the model not too rigid and thus, it is possible to generate smooth outputs without necessarily losing the
generalization ability. Controlled randomness being part of the training process therefore, leads to the strength
and stability of the predicted results.

Figure 8 presents nomograms of TTV. In all the graphs of regression, the gradient of the line is equal to
the unit, which means the target is proportional to the output. In this case, regression slopes are best fit by
convergence. The plot for each dataset of training, testing, and validation is proven for each scenario. Moreover,
an average of all three TTV datasets is added with a black output gradient.

Along with MSE and regression plots, R2 values (0.995-0.999), residual histogram, and predictions versus
reference value scatter plot are shown (Figs. 6 and 8). The relative errors (10->~10%) are less than 1 percent of
the Nusselt and Sherwood numbers, which is sufficiently insignificant to allow for the engineering analysis of
microchannel heat exchangers and porous media reactors. In this manner, LMNN predictions can be considered
statistically and physically valid.

Finally, Fig. 9 presents the Al-generated solutions and their absolute differences in numerical outcomes.
Subfigure 9a, ¢, e stands for Al-generated velocities of HNF with dashed and NF with solid lines. Both the
nanofluids exhibit the same pattern, and the difference between velocities is wider at the start, which decreases to
zero with increasing time. The velocity profile is wider due to a strong surface tension gradient, starting thermal
difference, and interaction of nanoparticles within the boundary layer. As the effects diminish due to thermal
diffusion, thermocapillary forces, and stabilizing particle interaction, leading to monotonous convergence.

Subfigure 9g, i is the temperature profile. These curves are close at the start due to homogeneous boundary
conditions. With the increase in the curves separated apart due to differing thermal properties and the significant
impacts of Ec and Pr near the boundary layer. These parameters affect the rate of viscous dissipation, thermal
diffusion, and mass transfer, causing divergence and system approaches to thermal equilibrium.

The following subfigures 9k, m, o present a concentration profile that starts with all curves together due to
homogeneous boundary conditions. It gets wider as the values influencing parameters increase with the rise in
concentration and reaches mass transfer equilibria with concentration stabilization.

The hybrid system has a better effective thermal conductivity and greater thermocapillary forces than the
conventional nanofluids. This is in line with the effective medium theory, in which the availability of ferrite
nanoparticles creates some extra heat conduction routes and alters the interfacial tension. This recorded
improvement in the Nusselt and Sherwood numbers is therefore indicative of a combined effect of both the
MnZnFe204 and NiZnFe204 particles, other than the individual nanofluids can produce.

Compared with the base fluid, the heat transfer behavior of the hybrid nanofluid is controlled by several
parameters, including the Darcy and Forchheimer numbers, the Marangoni ratio, the Eckert number, and the
Prandtl number. For example, an augmentation of the Darcy number leads to a reduction of the fluid’s velocity
so that convective heat transfer and thermal diffusion in the porous material are restricted. This restriction is
still in contrast with the effect of the Marangoni ratio, which stimulates surface-driven convection and heat
transfer through temperature gradients. The presence of MnZnFe,O, & NiZnFe,O4 nanoparticles in the base
fluid enhances the thermal conductivity compared to a single-phase nanofluid, as shown by T-H curves. Such
properties show that hybrid nanofluids can improve thermal applications in microelectronics and renewable
energy systems through the ability to sustain temperature gradients and heat flow rates in all flow rates. These
findings can be used as the basis for future research on ways to figure out the right concentrations of components
to incorporate in hybrid nanofluids to boost thermal performance, for various engineering uses.

Sensitivity analysis was done based on perturbing the input parameters (Pr, Ec, Da, Fr) about +5%. The
LMNN results were within 2 percent of each other, which validates the strength. Also, a Monte Carlo simulation
of 500 random samples of input ranges was conducted, and the average prediction error was less than 1%. These
findings indicate that the LMNN model is stable in uncertainty in mixture nanofluid properties.

The higher the Darcy number, the lower the flow resistance, and this increases velocity at the expense of
temperature gradients because of quicker convective transport. Conversely, an increase in Forchheimer numbers
brings on the inertial drag that decreases velocity. The thermocapillary forces present due to the gradient of
surface tension cause the fluid to move toward the surface with increased velocity, which increases the rate
of Marangoni convection. Eckert number increases fluid temperature because of viscous dissipation, and the
Prandtl number determines the relative thickness of the momentum and thermal boundary layers.

The model can be used in microchannel cooling systems, porous reactors, and in surface-tension-driven
flows in materials processing. Yet, the cost of the LMNN training on large datasets is the practical constraint,
as well as sensitivity to the noisy data, which should be addressed in future studies. Though this may require
the computationally intensive LMNN on large-scale data, in our case the training set was not large, and the
algorithm converged within several seconds. In the case of bigger systems, parallelization or other optimizers
can be needed. However, the precision and fast convergence that LMNN provides it suitable in mid-scale
engineering tasks where precision is more important compared to real-time specifications.

Conclusion

This numerical study delves into a machine learning-based comparative analysis of Marangoni convection
involving a simple hybrid nanofluid, specifically MnZnFe,O, and NiZnFe,O, in a water base (H,0). The
numerical data is gathered using a Python-based finite difference algorithm, with subsequent AI-driven analysis
performed within the MATLAB environment. Key parameters influencing thermal dissipation are assessed,
including heat transfer, mass transfer, and the irreversibility of viscous dissipation within the flow. The principal
findings are summarized as follows:
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« Both HNF and NF experience a decrease in flux as the inverse Darcy-Forchheimer value rises (Fig. 9a), with
a more pronounced decrease observed in HNF compared to NE. This sudden drop is due to the addition of a
second nano-solute.

o The flow rate’s increase with a higher Marangoni ratio is less prominent in HNF than in NF (Fig. 9¢).

« The velocity reduction as the Forchheimer number increases is more significant in HNF than in NF (Fig. 9e).

 An increased Eckert number enhances viscous dissipation, thereby raising the temperature profile near the
boundary, with this increase being more gradual in NF than in HNF (Fig. 9g, 1).

 Arise in both Schmidt value and activation energy results in a higher concentration profile, having a slightly
greater impact in HNF than in NF (Fig. 9(k, m)).

« Concentration decreases with a higher chemical reaction rate, with corresponding values being greater for
HNF as opposed to NF (Fig. 90).

o The absolute error values validate the Al results, with Al-generated outputs to the numerical dataset in Fig. 9
(b, d, f, h,j, 1, n, p) being significantly different from zero.

This article presents a new approach to predicting and controlling Marangoni convection in hybrid nanofluids
using machine learning (ML) techniques. The research highlighted the role of crucial parameters like the
Darcy and Forchheimer numbers, Eckert ratio, and Prandtl number in governing convective heat transfer
and overall fluid dynamics in hybrid nanofluids as opposed to standard nanofluids. Our findings indicate that
the Levenberg-Marquardt neural network in Artificial Intelligence achieved greater accuracy than traditional
deterministic model benchmarks, offering a groundbreaking method for fluid dynamic calculations.

This paper demonstrates that LMNN provides accurate forecasts of Marangoni convection in hybrid
nanofluids for Darcy-Forchheimer porous media. Some of the critical results are the justification of LMNN
investigations with literature and with parameter alterations and data sets. The method has potential extensions
to other hybrid nanofluids, non-uniform geometries, and real-time predictive computational modeling, both in
energy and biomedical engineering applications.

Thus, the prospects for advancing hybrid nanofluids in complex heat transfer systems across industrial,
biomedical, and environmental engineering fields are promising. Therefore, the proposed AI framework can
serve as a foundation for creating real-time predictive models that aim to regulate temperature in engineering
practices, while also enhancing the understanding of thermal optimization techniques across various
engineering disciplines. Ultimately, this paper lays the groundwork for the development of innovative AI-driven
thermodynamic applications and investigates novel applications of nanofluids to enhance heat transfer systems.

Data availability
The authors confirm that the data that supports the findings of this study are available within the article. Raw
data that support the finding of this study are available from the corresponding author, upon reasonable request.
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