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A R T I C L E  I N F O   

Keywords: 
Taylor-Couette flow 
Ferrofluid 
Axial and transverse magnetic fields 
Symmetry breaking 
Propagating vortices 

A B S T R A C T   

Numerical investigations of propagating vortex states (pVs) for ferrofluidic Couette flow with small aspect ratio 
and fixed non-rotating end-walls are presented. We study structural modifications and changes in spatial and 
temporal behavior for pV solutions. The system is subjected to either pure axial or pure transverse magnetic field, 
with the latter already breaking the basic system symmetries. While under axial magnetic field pVs remain 
basically the same, they are found to appear in various configurations with different symmetry variation in flow 
structure and flow dynamics under symmetry breaking transversal magnetic field. pVs appearing in a pitchfork 
bifurcation are found either symmetric or asymmetric/alternating, regarding the full cycle of vortex generation, 
propagation and annihilation, in upper and lower system half.   

1. Introduction 

The flow confined between two concentric cylinders rotating with 
different velocity, Taylor-Couette flow, has been for more than a century 
the focus of scientific interest to study fundamental fluid dynamics, non- 
linear dynamics, self-organization, various hydrodynamic stabilities and 
pattern formation etc., both numerically and experimentally [1,2]. 
Although, classical fluids in this system setup (Taylor-Couette system, 
TCS) [3–5] have been studied for several decades the dynamics of 
complex fluids, e.g., ferrofluids [6,7] (manufactured fluids consisting of 
dispersion of magnetized nanoparticles in a liquid carrier), have 
attracted attention mainly in recent years/modern era [8–20]. 

In experimental realizations of Couette-flow, the viscous fluid is 
often enclosed by non-rotating axial end walls (e.g. non-rotating lids) at 
top and bottom, and therefore the axial translation invariance of the 
idealized infinite (periodic system) is broken [21]. At any driving rate, 
these end walls generate disturbances [22–25], resulting in an axisym
metric, secondary circulation, so-called Ekman vortices which overlay 
and deform idealized/theoretical Circular-Couette flow (CCF) and 
create a new stationary, rotationally symmetric basic flow [25]. 

Consider a ferrofluid, further parameters, such as the orientation of 
an applied magnetic field with respect to the fluid flow become impor
tant as this has crucial influence to the magnetoviscous effect in ferro
fluids [26,6]. In general, any external applied magnetic field, 
independent of it’s orientation, results in a stabilization of the basic state 
as well as shifting bifurcation thresholds for any flow structure 
[8,13–15]. For axial, radial or azimuthal orientated magnetic fields, the 
resulting effects are only quantitative and appear as differences/changes 

in the distance of the up-shift of primary bifurcation thresholds 
[8,13,15,26–28]. However, the scenario is more complicate if a trans
versal field component is present. Aside the shift of bifurcation thresh
olds, such a field results in significant qualitative differences, also 
breaking the classical system symmetries for TCS [13,16,17], rendering 
all flows to be three-dimensional and therefore increasing the already 
huge number of flow states known to exist in the system [1–5]. 

Although propagating vortex pattern are nothing uncommon and in 
fact appear in huge variety in TCS, the here studied propagating vortices 
(pVs) are special/different under certain aspects. Usually propagating 
structures in TCS include an azimuthal rotation, e.g. spiral vortices 
[21,4], wavy Taylor vortices [31–33], etc. By contrast here investigated 
pVs don’t include any azimuthal rotation, only axial motion is involved. 
For classical TCS and pure axial field these are “M = 0”-mode [29,30] 
solutions. 

Among others, the present study has been motivated by the recent 
work of Ilzig et al. [30] who were the first to study pVs in a ferrofluid 
Couette flow. They investigated pVs in a ferrofluid with asymmetric 
axial boundary condition (one side open) exposed to external homoge
neous axial magnetic fields. They detected an increasing orbital fre
quency (i.e. decreasing period time) with increasing field strengths as 
well as appearance of disturbed pVs due to temporarily superimposed 
spiral structures. However they could not provide deeper inside of the 
underlying topology of pV states. 

The overall goal of this study (first and second part) is to expand the 
parameter range in which the pV states are existing, stable and unstable, 
and further to investigate the underlying topology of these flow states in 
ferrofluids in the presence of different magnetic fields. The current paper 
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as the first part is focussed on either pure axial or pure transversal mag
netic fields, with the latter already breaking the basic system symme
tries. The second part [34] focus on oblique magnetic fields as 
superposition of axial and transversal magnetic fields, which results in 
complexer non-linear mode interaction and further modification of 
system symmetries, dynamics and topology. 

2. Methods 

2.1. System setting and the Navier–Stokes equation 

We consider a standard Taylor-Couette system (TCS) (Fig. 1) con
sisting of two concentric, independently rotating cylinders. Within the 
gap between the two cylinders there is an incompressible, isothermal, 
homogeneous, mono-dispersed ferrofluid of kinematic viscosity ν and 
density ρ. The inner and outer cylinders have radius Ri and Ro, and they 
rotate with the angular velocity ωi and ωo, respectively. Here, we 
consider rigid boundary conditions in the axial direction with stationary 
non-rotating lids and no-slip boundary conditions on the cylinders. The 
height-to-gap aspect ratio is fixed to Γ = L/d = 4. The system can be 
characterized in the cylindrical coordinate system (r, θ, z) by the velocity 
field u = (u, v,w) and the corresponding vorticity field ∇× u = (ξ,η,ζ). 
The radius ratio of the cylinders, Ri/Ro is kept fixed at 0.5. A homoge
neous magnetic field H = Hxex[Hzez] with a transversal component Hx or 
an axial component Hz is considered. [Hz and Hx being the field 
strengths.] Length and time scales of the system are set by the gap width 
d = Ro − Ri and the diffusion time d2/ν, respectively. The pressure in the 
fluid is normalized by ρν2/d2, and the magnetic field H and the 
magnetization M can be conveniently normalized by the quantity 
̅̅̅̅̅̅̅̅̅̅
ρ/μ0

√
ν/d, with free space permeability μ0. These considerations lead to 

the following set of non-dimensionalized hydro-dynamical equations 
[17,35]: 

(
∂t + u⋅∇

)
u − ∇2u +∇p =

(

M⋅∇
)

H +
1
2
∇×

(

M × H
)

,

∇⋅u = 0.
(1) 

On the cylindrical surfaces, the velocity fields are given by u(ri, θ, z)

= (0,Rei,0) and u(ro,θ, z) = (0,Reo,0), where the inner and outer Rey
nolds numbers are Rei = ωirid/ν and Reo = ωorod/ν, respectively, where 
ri = Ri/(Ro − Ri) and ro = Ro/(Ro − Ri) are the non-dimensionalized inner 
and outer cylinder radii, respectively. In the present work we consider 
counter-rotating cylinders and therefore keep them fixed to Rei = 195 
and Reo = − 300, respectively, meaning a rotation ratio 
Reo/Rei ≈ − 1.54. Thereby the chosen fixed values of Rei and Reo guar
antee the flow to remain supercritical for sufficient parameter range sx,sz, 
as it is a matter of fact that any magnetic field (independent it’s orien
tation) stabilizes the basic state, i.e. shifting the bifurcation thresholds to 
larger control parameters. 

Eq. (1) is to be solved together with an equation that describes the 
magnetization of the ferrofluid. Using the approach of Niklas [8], 
derived from the theory by Shliomis [6] under the assumption of a 
stationary magnetization, and some further simplifications (see Ap
pendix for details) leads to the following ferrohydrodynamical 
equations. 
(

∂t + u⋅∇
)

u − ∇2u+∇pM = s2
N

{

∇2u −
4
5
[∇⋅(SH)] − H ×

[
1
2
∇×

(

∇

× u × H
)

− H ×

(

∇2u
)

+
4
5
∇

×

(

SH
)]}

,

(2)  

S is the symmetric component of the velocity gradient tensor [17,35]. 
Thus the effect of the magnetic field and the magnetic properties of the 
ferrofluid on the velocity field can be characterized by a single param
eter, the magnetic field or the Niklas parameter [8]: 

s2
N = s2

x + s2
z , (3)  

with 

s2
x =

2(2 + χ)HxcN

(2 + χ)2
− χ2η2

, s2
z = HzcN . (4) 

Here, χ is the magnetic susceptibility of the ferrofluid, which can be 
approximated by Langevin’s formula [36], and the Niklas coefficient cN 

depends on the properties of the ferrofluid and magnetic field [8,13,14] 
as described in the Appendix. The ferrohydrodynamic system Eq. (2) is 
solved numerically with the code G1D3 [6]. G1D3 combines a finite 
difference method of second order in (r, z) and time (explicit) with 
spectral decomposition in θ. The numerical approach to solving the 
equations is outlined in more detail the Appendix. 

In this paper we present results in absence (none) of any applied 
magnetic field, (sx; sz) = (0.0; 0.0), pure transverse magnetic field, (sx ∈

]0,1]; 0.0), and pure axial magnetic field, (0.0; sz ∈]0,1]). These values/ 
parameters correspond to moderate magnetic fields used in several ex
periments [9,15,16]. 

2.2. Symmetries 

In a classical TCS or a ferrofluidic TCS without any external magnetic 
field where the fluid is confined by end walls, the system is invariant 
with respect to arbitrary rotations about the axis and the reflections 
about axial mid-height. For a ferrofluid under a transverse magnetic 
field, these symmetries are broken and the flow is inherently three- 
dimensional for any non-zero values of the parameters Rei,Reo and sx, 
due to the rotation of the cylinders [13,14,16,17,37,28]. With at least 
one cylinder rotating, the inclusion of the magnetic terms in the fer
ro–hydrodynamic equation results in a downward directed force on the 
side where the field enters the system (θ = 0), and an upward directed 
force on the opposite side (θ = π) where the field exits the annulus. The 
resulting flow states can possess more complicated symmetries, such as 
the reflection KHx

z about the annulus mid-height plane along with an 
Fig. 1. Schematic of the Taylor-Couette system (TCS) with an external applied 
homogeneous transversal [axial] magnetic field Hext = Hxex[Hzez]. 
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inversion of the magnetic field direction. There can also be a rotational 
invariance RHx

α for discrete angle α = π in combination with the reversal 
of the magnetic field, where the angle π specifies the direction of the 
magnetic field when entering the annulus [17]. Thus the symmetries 
associated with the velocity field are 

RHx
π
(
u, v,w,Hx

)(
r, θ, z, t

)
=
(
u, v,w, − Hx

)(
r, θ + π, z, t

)
,

KHx
z

(
u, v,w,Hx

)(
r, θ, z, t

)
=
(
u, v, − w, − Hx

)(
r, θ, − z, t

)
.

(5)  

Given a periodic solution (with period τ), the flow field is also invariant 
under the discrete time translation 

Φτ(u, v,w,Hx)(r, θ, z, t) = (u, v,w,Hx)(r, θ, z, t+ τ).

Thus the symmetry group of classical TCS with stationary lids, SO(2) ×
Z2 × R is replaced by complexer discrete spacetime symmetries. The full 
symmetry group of the problem under transverse magnetic field reads as 
SO(2)Hx × ZHx

2 × R. Further details of the magnetic field induced twofold 
symmetry can be found in Ref. [17]. 

2.3. Nomenclature/Notation & parameter space 

The present study focus on flow dynamics in TCS with relative small 
aspect-ratio Γ = 4.0 and counter-rotating cylinders for fixed outer 
Reynolds number Reo = − 300 and fixed inner Reynolds number Rei =

195 (i.e. rotation ratio equal Reo/Rei ≈ − 1.54), respectively. As a result 
common appearing structures in absence of any magnetic field are (pure 
m = 0 mode) flow states, either stationary solution 6 V, (i.e. 6-cell flow 
[29,38,39]) as well as periodic, axial propagating solutions, so called pV 
states [29,30]. These pV states illustrate a spatio-temporal dynamics 
with periodic vortex generation and annihilation. Worth to mention that 
the here studied parameter regime is well below the marginal (linear) 
stability thresholds of corresponding modes. Table 1 provides an over
view of all different flow states discussed in this work. Acronyms, flow 
states, including main characteristics, dominant modes, numbers (#) of 
present vortex cells, flow dynamics, magnetic field correlation and 
classification are indicated. Worth to mention, that former reported 
propagating vortex states [29,30] were just denoted as pV states. 
However, based on further characteristics we will basically distinguish 
between pVs and pVa, based on the symmetry of the vortex propagating 
structures with respect to system mid-hight. See below for further 
details. 

Either for pure axial and transversal magnetic field all time depen
dent solutions of propagating flow states (pV) appear as limit cycle so
lution. Worth to mention that for oblique fields (combination of both) 
the scenario becomes more difficult and pVs exist with higher 
complexity with respect to the underlying manifold. This is focus of the 
second part of this study [34]. 

3. Propagating Vortex flow in absence of any magnetic field 

Before we start the discussion of effects on pV states with variation 
any magnetic field strength, we shortly describe the pV state that 

appears at given parameters in absence of any field. For further details 
we refer to [29] in which pVs in classical TCS have been studied 
numerically and experimentally in detail for various aspect ratios. 

Fig. 2 shows snapshots over one period τ ≈ 0.173 of pVs in absence of 
any applied magnetic field. At (a) t = 0 the pVs state exhibits six vortices 
very similar to the stationary 6 V state (i.e. two pairs of vortices in the 
bulk plus two Ekman vortices near the lids). Moving forward in time (b)
two new vortex pairs are generated simultaneously and symmetrically 
near both, the upper and lower Ekman vortices creating a temporarily 
state with higher number of vortices (here 10). These new vortex pairs 
grow and propagate towards the mid-height of the system where they 
finally become annihilated and the flow returns to the initial pVs state 
exhibiting six vortices. Another perspective of this periodic motion of 
vortices towards the center is given by the spacetime plots of the radial 
velocity in Fig. 5(a). The black zero-contour lines clearly identify the 
dynamics as well as the Kz symmetry of pVs. For more details, see also 
Fig. 2 and corresponding description in [29]. Worth to emphasis that for 
pVs the process of generation and annihilation appears simultaneously in 
either upper and lower half of the system. The fact pVs being pure a 
‘pure’ m = 0 mode structure [13,15,29,30] is clearly visible in the pure 
horizontal placed contour zero-lines in u(θ, z) (Fig. 2). 

Corresponding power spectral densities (PSDs) and time series of Ekin 
and η± for pVs are shown in Fig. 4(1). Note that here τ is the same period 
of the time series of Ekin and η± as the vortices are simultaneously and 
symmetrically propagating from the lids towards mid-height. 

4. Propagating Vortex flow in axial magnetic field 

As mentioned before, this work, among others was motivated by the 
recent experimental work by Ilzig et al. [30]. They studied pVs under 
axial magnetic field for aspect ratios Γ = 5 (odd) and Γ = 6 (even). 
However, their work dealt with different boundary conditions, as they 
used a one side open system and therefore the basic system symmetries 
are intrinsically broken. In addition the present study tends more to 
focus on quantitative analysis, bifurcation scenario and underlying to
pology. Following we start considering a pure axial magnetic field and 
variation its field strength sz. 

4.1. Bifurcation scenario and period time with sz 

The bifurcation diagram with sz is shown in Fig. 3, including an inset 
illustrating corresponding evolution in period time τ for pVs. With 
increasing the field strength, sz, the modal kinetic (time-averaged) en
ergy Ekin for pVs grows monotonously, first moderate (until sz ≈ 0.2) and 
with larger field strength faster before pVs eventually disappear at sz ≈

0.565 leaving a stationary 6 V state behind. Although a change in slope 
is clearly visible after reaching the stationary 6 V state, the general 
monotonously increasing trend in Ekin, with increasing sz, remains un
changed. In parallel, the corresponding period time τ behaves just 
opposite and decreases monotonously with sz before pVs vanishes (inset 
in Fig. 3). This behavior is congruent with the well known stabilization 
effect of magnetic fields [8,13,15] which means an effective shift of the 

Table 1 
Flow state nomenclature and abbreviations. From left to right; acronym, flow state, dominant azimuthal (mode) contribution, numbers (#) of vortex cells, flow 
characteristics, flow dynamics, magnetic field correlation, symmetries and topological classification as fixed point (f) or limit cycle (l). Although pVam

2 does not have 
any particular symmetry, it exist degenerated together with pVam∗

2 = KHx
z pVam

2 .  

Acronym Flow state Modes m # vortex cells Characteristics Dynamics H field Symmetries Solution 

6 V Normal 6-cell 0 6 stationary – sx = 0  Kz  f 
6 V2  Normal 6-cell 0,2  6 stationary – sx ∕= 0  KHx

z  f 

pVs Propagating Vortex 0 6 + n, n∈ {2N} periodic symmetric prop. sx = 0  Kz  l 
pVs

2  Propagating Vortex 0,2  6 + n, n∈ {2N} periodic symmetric prop. sx ∕= 0  KHx
z  l 

pVa
2  Propagating Vortex 0,2  6 + n, n∈ {2N} periodic alternate prop. sx ∕= 0  SHx  l 

pVam
2  Propagating Vortex 0,2  6 + n, n∈ {2N} periodic alternate prop. sx ∕= 0  – l  

S. Altmeyer                                                                                                                                                                                                                                       
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marginal stabilization threshold to larger control parameters. Ilzig et al. 
[30] detected the same characteristics in their experimental study, 
which they described as change in orbital frequency of pVs. Important to 
mention that over the whole here investigated parameter space 
sz ∈ [0; 1]the symmetry of all flow structures, either time-dependent pVs 

and stationary 6V remain the same, all fulfill Kz symmetry. 
More general speaking, due to the stabilization effect, an increase in 

the magnetic field strength (independent of the field direction) has 
qualitative a similar effect, e.g. decreasing Rei, as another control 
parameter [13,15]. 

For increasing sz, the time series of Ekin as global measure simplify, 
while the corresponding ones of η± become more pronounced (insets in 
Fig. 4). Meanwhile the general dynamics for pVs remain unchanged by 
this for any magnetic field strength sz. Corresponding PSD and time 
series for both, global measure Ekin and local measures η± illustrate the 
dynamics to be associated with one single frequency ω (or correspond
ing period time τ, cf. inset in Fig. 4(1a)) rendering the flow to be a limit 

cycle solution. This, together with the decreasing time period τ can be 
also spotted in the spacetime plots in Fig. 5, which provide another 
perspective of the global flow dynamics. The zero-contour level is in 
black and indicates how the new generated vortex pairs travel (from the 
appearance near both lids) towards the system mid-height where they 
eventually become annihilated. The flow dynamics becomes less intense 
(decreasing amplitudes) with the propagation region shrinking in size 
(z-direction) towards the onset of pVs at sz ≈ 0.565. In general, the 
global flow dynamics becomes smoother with increasing sz moving 
closer to the onset as indicated in simpler time series of Ekin (Fig. 4(3a)) 
and less sharp separation between the zero-contour lines identifying 
consecutive periods (Fig. 5(b, c)). Aside the Kz symmetry is obvious in 
the spacetime plots. 

With increasing sz the basic flow dynamics for pVs remain un
changed, with only qualitative measure in slightly shorter period time. 
In particular the flow remains 2D being a ‘pure’ m = 0 mode structure 
[13,15,30]. An analog flow visualizations to Fig. 2, but for pVs at sz =

0.5 is provided in Fig. 1 in Supplementary Materials (SM) and highlights 
this characteristic with clear visible horizontal contour zero-lines in u(θ,
z). 

All our finding for pure axial magnetic fields are in qualitative good 
agreement with the experimental findings by Ilzig et al. [30] despite 
their study of a one side open system (with different boundary condi
tions). A qualitative comparison to their experimental results is provided 
in SM. 

4.2. Space time evolution and phase Space with sz 

In order to visualize the change in flow dynamics with variation in sz, 
Fig. 6 illustrate the phase portraits of pVs solutions for different sz over 
both, (a) (η+, η− ) and (b) (η±, Ekin) planes. In the (η+, η− ) plane all pVs 

states come to lie on the diagonal η+ = η− line, i.e. topological speaking 
a degenerated limit cycle. The distance from the phase portraits to the 
diagonal line η− = η+ is a measure of the degree to which Z2 symmetry is 
broken However, the (η±,Ekin) plane clearly illustrates the limit cycle 
characteristic of pVs together with the coincide shrinking of the cycles 
with increasing sz. Moving towards the onset the region explored by 
corresponding trajectories shrink until it eventually collapsing into a 

Fig. 2. Visualization of propagating flow state pVs in absence of any magnetic field. Shown are over one period τ at instants of time (a) t = 0, (b) t = τ/4, (c) t = τ/2, 
and (d) t = 3τ/4. For each time step are shown (clockwise) isosurfaces of η (isolevel shown at η = ±150). Vector plots [u(r, z),w(r, z)] of the radial and axial velocity 
component (θ = 0), where the color-coded azimuthal velocity field v is also shown. Radial velocity u(θ, z) on an unrolled cylindrical surface in the annulus at mid- 
gap. Red (dark gray) and yellow (light gray) colors correspond to positive and negative values, respectively, with zero specified as white. The period time is τ ≈ 0.173 
(cf. Fig. 4(1)). [The same legends for flow visualization are used for all subsequent unsteady flows.] Note that the pure horizontal placed contour zero-lines in u(θ, z)
highlight the fact of pVs being a ‘pure’ m = 0. mode structure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. Bifurcation diagram and period time evolution with sz. Shown is the 
total (time-averaged for time-dependent flow solutions) modal kinetic energy 
Ekin. Solid [open] symbols indicate time dependent [stationary] solutions. The 
inset illustrates the variation of period time τ with sz for pVs states. 
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Fig. 4. Time series and power spectral densities (PSDs) for propagating flow state pVs at different sz. PSDs of (a) Ekin and (b) η+ for different pVs. (1) In absence of any 
magnetic field (cf. Fig. 2) with period time τ ≈ 0.173 and corresponding frequency ω ≈ 5.779. (2) For sz = 0.4 with period time τ ≈ 0.171 and corresponding 
frequency ω ≈ 5.853. (3) For sz = 0.5 with period time τ ≈ 0.150 and corresponding frequency ω ≈ 6.662. Insets show time series of Ekin, η+ [red], η− [black]. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Space–timeplots of the radial velocity u for pVs at (a) no magnetic field sz = 0, (b) sz = 0.4 and (c) sz = 0.5. Visualizations are shown for radial positions r =

ri + d/2. Red (dark gray) and yellow (light gray) correspond to positive and negative values. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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single fixed point, the stationary solution 6 V at sz ≈ 0.58. 
Finally Fig. 7 illustrates this stationary solution 6 V at sz = 0.6, close 

to the onset of pVs. Either flow visualizations and mode amplitudes 
⃒
⃒um,n

⃒
⃒

(Fig. 7(e)) highlight the 2D character of the flow state (m = 0 flow 
[13,30], all larger modes m⩾1 are identical zero). 

5. Propagating Vortex flow in transverse magnetic field 

As discussed in Section 2.2 any transverse field component destroys 
the basic system symmetries (invariant to arbitrary time translation, 
rotations about the axis, reflections about axial mid-height [40]), and 
replace them by complexer symmetries (see also Eq. (5)) [17]. As a 
result also the propagating vortices lose their 2D characteristics and 
become inherentially 3D for sx ∕= 0, which we indicate as pV2. The 
index 2 is used to indicate the stimulation of m = 2 modes due to a 
symmetry breaking transversal magnetic field [13,16,17,28]. 

5.1. Bifurcation scenario and period time for sx ∕= 0 

As before, we will start our discussion by looking at the corre
sponding bifurcation diagram shown in Fig. 8 illustrating the evolution 
of (time-averaged) modal kinetic energy Ekin and corresponding time 
period τ with sx. 

Analog to the scenario for pure axial magnetic field, we start in the 
symmetric solution pVs in absence of any magnetic field. As soon as 
sx ∕= 0, the flow becomes inherently 3D due former mentioned reasons 
and thus the solution pVs

2 is present. pVs
2 features basically the same 

dynamics as pVs. Increasing sx results in a monotonously growing kinetic 
energy Ekin with an almost linear behavior/slope for sx≳0.4 before 
eventually the flow becomes stationary, 6 V2, at sx ≈ 0.77. The magnetic 
field induced 2-fold symmetry (m = 2 modes) which renders the solu
tion to be 3D is clearly visible in Fig. 12 which presents different 

Fig. 6. Phase space for sz. Phase portraits of pVs at different sz as indicated in 
(a) (η− , η+) and (b) (Ekin, η±) plane. Numbers in the figure identify the magnetic 
field strength sz. Due to symmetry reason, the limit cycle solutions appear due 
to projection in (η− ,η+), as a single line (degenerated solution) on the diagonal 
line η− = η+ (a), but can be clearly indicated in (b). Same color code is used in 
both presentations (a, b). 

Fig. 7. Stationary 6 V flow structure for sz = 0.6. Shown are (a) the azimuthal velocity v(θ, z) at mid-height [red (yellow)] color indicates positive (negative) flow], 
(b) the radial velocity u(θ, z) on an unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow], (c) isosurfaces of η = ±150 [red 
(dark gray) and yellow (light gray) colors correspond to positive and negative values, respectively, with zero specified as white] and (d) vector plot [u(r, z),w(r, z)] (at 
θ = 0) of the radial and axial velocity components including color-coded azimuthal velocity v. (e) Mode amplitudes 

⃒
⃒um,n

⃒
⃒ of the radial velocity field u over the 

m − n-plane. The values are scaled regarding the maximum mode amplitude to be 1. [Analog visualizations are used in the following to characterize other stationary 
flow structures in the paper.]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Bifurcation diagram and period time evolution as Fig. 3 but for varia
tion with sx. Note that all flow structures are 3D except for p.Vs. 
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perspectives of 6 V2 at sx = 0.775. However, different to the scenario for 
axial magnetic field, in presence of transverse magnetic fields, pVs

2 does 
not move/end direct into the stationary solution 6 V2. Instead it loses it’s 
stability at sx ≈ 0.72 in favor of another, coexisting propagating vortex 
state, pVa

2, which then finally disappears into 6 V2. Starting in the sta
tionary solution 6 V2 and decreasing sx the corresponding sequence 
reads as follows: At the pitchfork bifurcation at sx ≈ 0.77 pVa(∗)

2 appears 
as stable solution while pVs

s only exists unstable. Decreasing sx, pVa
2 

undergoes a symmetry breaking Hopf bifurcation into another modu
lated solution pVam

2 (see below), which finally loses stability at sx ≈ 0.64 
to move transient into the only stable solution pVs

2. The latter remains 
stable existing for the whole parameter until sx disappear, ending in pVs. 

5.1.1. Flow structures and transition scenarios with sx 
The former mentioned transition scenario from pVs

2, losing it’s sta
bility and then changing towards the stable solution pVa

2 is illustrated in 
Fig. 9 for sx = 0.71. Although both, pVs

2 and pVa
2 describe solutions with 

propagating vortices, there are some key differences. 
While pVs

2 fulfill the basic system symmetries in presence of a 
transverse magnetic field (Eq. (5)), for pVa

2 the basic KHx
z symmetry is 

broken. Instead pVa
2 only has a complexer spacetime symmetry, which is 

donated/known as half-period flip SHx , where KHx
z (pVa

2(t)) = pVa
2(t +

τ/2). The effect of SHx = KHx
z ΦHx

τ/2 on the velocity field is 

SHx
(
u, v,w,Hx

)
s
(
r, θ, z, t

)
=
(
u, v, − w, − Hx

)(
r, θ, − z, t+ τ

/
2
)
.

However, it is worth to mention that this half-period-flip is slightly 
different from the common one featured in TCS, which usually includes/ 
involves a rotation of the flow structure. In the present scenario no 
azimuthal rotation is present. All propagation and motion dynamics 
exclusively appear in axial direction. The snapshots at t = 0 (2a) and t =
τ/2 (2c) in Fig. 10 highlight the half-period-flip symmetry SHx of pVa

2. 
Fig. 9 shed some light into this change in symmetry from different 

perspectives. First of all the spacetime plots of u(θ, z) at mid-gap clearly 
show a change in the flow pattern. At the beginning of the trans
formation (pVs

2) (Fig. 9(a)) the black zero-contour lines as indicator for 
the propagating vortices, appear symmetrically near the upper and 
lower lids (as for pVs in Fig. 2) in a kind of elliptic pattern pointing to
wards the mid-height region and to the right (time evolution). In 
contrast at the end of the transition scenario in (pVa

2) (Fig. 9(c)) a pattern 
with alternate appearance between top and bottom of these elongated 
elliptic regions is present. Corresponding time evolution of the local 
measures η+ and η− (Fig. 9(2b,2c)) during the transition show the initial 
synchronized motion in time for η± from which it moves toward a half 
period shifted time evolution for η+ and η− , respectively. In the similar 
manner the phase portrait (η+, η− ) elucidate the evolution from the 
symmetric pVs

2, degenerated limit cycle solution, appearing on the di
agonal with η+ = η− towards the asymmetric pVa

2 state, exploring a 
wider region in (η+, η− ) parameter space. Note that pVa

2 remains sym
metric via mirroring at the diagonal η+ = η− . 

For a direct comparison of these different types of propagating vortex 
states, both Figs. 10 and 11 illustrate different perspectives and features 

Fig. 9. Transition from pVs
2 into pVa

2 at sx = 0.71. (1) Space–time plot of u(θ, z) at radial position r = ri +d/2 shown for different times during the transition: (a)
0⩽t⩽1, (b) 1⩽t⩽12, and (c) 11⩽t⩽12. Red (dark gray) and yellow (light gray) correspond to positive and negative values. (2) Quantities of time series of (a) Ekin, (b)
η± and (c) phase portrait (η− , η+) illustrating the evolution from pVs

2 into pVsa
2. Note that the distance from the phase portraits towards the line η− = η+ is a measure 

of the degree to which the KHx
z symmetry is broken. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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of pVs
2 and pVa

2, which are coexisting at sx = 0.65. Fig. 10 shows flow 
visualizations over one period while Fig. 11 gives a more quantitative 
measure with the PSD of Ekin, η± aside spacetime plots. For a better 
impression of the dynamics see also the movies movie_pVs2_sx065.avi 
and movie_pVa2_sx065.avi in SM. 

Regarding Fig. 10, both, 3D plots of the azimuthal vorticity, η, and 
the radial velocity u(r, θ) at cylinder mid-gap indicate the either sym
metrically motion (from lids towards mid-height) of vortices for pVs

2 or 
the alternate appearance and motion of these vortices for pVa

2. Aside, the 
2-fold symmetry (m = 2-mode) stimulated by the symmetry breaking 
transverse magnetic field is clearly visible in u(r, θ) for pVs

2 and pVa
2, 

respectively (Fig. 10). This also held for the stationary state 6 V2 
(Fig. 12(b)). 

While the averaged kinetic energy Ekin for pVs
2 and pVa

2 are virtually 
indistinguishable and fall together the corresponding period times τ are 
slightly different (insight in Fig. 8). Regarding pVs

2, the trend is similar to 
the scenario under axial magnetic fields, with the only difference, that 
the period time τ is not fully monotonously. Here τ first slightly increase, 
before it decreases with sx. While similar decrease in τ for pVa

2 and pVam
2 

is visible, there is an obvious significant smaller variation in τ close to 
the onset. 

Fig. 12 illustrates flow visualizations of the stationary 6 V2 flow 
structures at sx = 0.775 out of which both, pVs

2 and pVa(∗)
2 bifurcate from 

in a pitchfork bifurcation (at sx ≈ 0.77) with decreasing sx. However, 
while pVa

2 appears out of 6 V2 as stable solution, pVs
2 is unstable close to 

the onset and becomes stabilized at sx ≈ 0.72 and hereafter remains 
stable towards the point of vanishing magnetic field sx = 0. Either mode 
amplitudes 

⃒
⃒um,n

⃒
⃒ and radial flow u(r, θ) (Fig. 12(b, e)) highlight the 

stimulated m = 2 modes due transversal magnetic field. 
The evolution of the limit cycle solution pVa

2 (at sx = 0.76, i.e. close 
to onset) out of the fixed point solution 6 V2 is illustrated in Fig. 13. 
Starting with a single point in phase space (Fig. 13(2c)) the flow be
comes time dependent and the dynamic changes into the limit cycle 
solution pVa

2 with alternating motion in upper and lower system half, as 
can be detected in time series of η± as well the spacetime plot (Fig. 13(1,
2b)). 

Fig. 14 shows corresponding power spectral densities (PSDs) and 
time series of Ekin and η± for pVa

2 close to onset at sx = 0.76. Note that 
here τ is twice the period of the time series of Ekin; this is because pVa

2 is 
half-period-flip invariant and so Ekin(pVa

2(t)) = Ekin(pVa
2(t + τ/2)), 

whereas pVa
2 is τ periodic, pVa

2(t) = pVa
2(t + τ). 

It is worth to mention that at the bifurcation point, only pVa
2 bi

furcates stable out of the stationary solution 6 V2, while pVs
2 is unstable 

close to onset. Applying symmetry restriction to our numerical simula
tion we could also observe the unstable symmetric pVs

2 state close to 
onset. However, releasing the restrictions the solution always moves 
towards the asymmetric pVa

2 state. But worth to mention as this depends 
on various system parameters, one cannot exclude that for another setup 
also symmetric pVs

2 states may bifurcate primary and stable, as it does 
for pure axial field configuration (cf. Fig. 8). At some distance apart of 

Fig. 10. Flow visualizations of pVs
2 and pVa

2 at sx = 0.65. As Fig. 2 but for sx = 0.65. Comparison of (1) pVs
2 with period time τ ≈ 0.169 and (2) pVa

2 with period time 
τ ≈ 173. See also movie_pVs2_sx065.avi and movie_pVa2_sx065.avi in SM. Note the snapshots at t = 0 (2a) and t = τ/2 (2c) illustrate the half-period-flip symmetry 
SHx of pVa

2. 
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Fig. 11. Comparison pVs
2 and pVa

2 at sx = 0.65. Shown are PSD of Ekin, η+ (including insets illustrating corresponding time series) and spacetime plots of (a) pVs
2 and 

(b) pVa
2 at sx = 0.65. See also movie_pVs2_sx065.avi and movie_pVa2_sx065.avi in SM. 

Fig. 12. Stationary 6 V2 flow structures for sx = 0.775 (sz = 0.0). As Fig. 7 but for sx = 0.775. Note that (d) show vector plots [u(r, z),w(r, z)] for θ = 0 (left) and θ =

π/4 (right), respectively, illustrating the 3D characteristics due to m = 2 mo.de stimulation. 
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the onset pVs
2 becomes stabilized and thus coexisting with pVa

2. 
After being stabilized, with decreasing sx the flow pVs

2 continuous to 
exist with minor changes in it’s dynamics until sx = 0. This scenario is 
very similar to the one discussed before for axial magnetic field. Basi
cally only the period time τ changes slightly. However, the scenario for 
the asymmetric solution pVa

2 becomes more complicate. At sx ≈ 0.64 
pVa

2 undergoes a symmetry breaking Hopf bifurcation. Here the half- 
period-flip symmetry SHx becomes broken. Following this, both peri
odic solutions evolve on one or other symmetrically related limit cycles 
pVma

2 and pVma∗
2 = KHx

z pVma
2 (the index m indicate the modulation). 

5.1.2. Phase Space and asymmetry characteristics with sx 
Visually (by pure eye) pVa

2 and its modulated cousin, pVam
2 , are 

indistinguishable (see also Fig. 2 in SM). However, either in the time 
series of η± and in the phase space projection the broken half-period-flip 
symmetry SHx is observable (Fig. 15(b)). 

Fig. 15(a) provides time series of η+, η− , η+(t+τ/2) (η+ with half 
period shift τ/2) and the difference Δη(t, t + τ/2) = η+(t) − η− (t + τ/2). 
Although by pure eye hardly any variation between η+ and η+(t+τ2) is 
observable, Δη clearly reveals the differences. Δη = 0 for pVa

2 at sx =

0.65 and having finite values Δη ∕= 0 for pVam
2 at sx = 0.6 shows the 

change from being half-period-flip symmetric to a broken half-period 
flip symmetry. The phase space projection (Fig. 15(b)) illustrates this 
behavior with broken SHx symmetry for pVam

2 . While pVa
2 for sx = 0.65 

appears symmetric with respect to the diagonal line η− = η+ this sym
metry is lost for pVam

2 at sx = 0.6 (cf. Fig. 16). 
Fig. 16 shows phase portraits, both in (η+, η− ) and (η+,Ekin) planes 

representing all flow structures with variation in sx. As already seen for 
axial magnetic field the KHx

z symmetric solutions pVs
2 appear as 

degenerated limit cycles to lie on the diagonal η− = η+. But note, in 
contrast to pure axial field, here pVs

2 are fully 3D. pVa
2 appear reflection 

symmetry with respect to the diagonal η− = η+, which finally disappear 
for pVam

2 , existing as two degenerated solutions. 
In order to further quantitative measure the asymmetry between the 

different flow structures pVs
2, pVa

2, and pVam
2 , we defined an asymmetry 

parameter as ηA = (Δη+2 − Δη2
− )

1/2 with Δη± = max(η±) − min(η±). By 
this ηA measures the asymmetry regarding the diagonal η+ = η− . The 
variation with sx for ηA is shown in Fig. 17. As a result, that pV, 6 V2 and 
pVs

2 all fulfill the basic system reflection symmetry KHx
z (i.e Kz for pV in 

absence of a magnetic field) ηA = 0 for all these states. On the other hand 
the broken KHx

z symmetry, replaced by the half period-flip-symmetry, 
SHx , results in a continuously increasing magnitude/amplitude ηA from 
the onset at sx ≈ 0.77. Thus the solutions become more asymmetric, also 
visible in the continuously exploration of a wider region in phase space 
in (η+, η− ) plane with decreasing sx. This trend even increase with the 
loss of SHx and the appearance of the two symmetry related limit cycles 
pVam

2 and pVam∗
2 at sx ≈ 0.63 (Fig. 15). 

6. Discussion and conclusion 

This paper is the first of two parts dealing with propagating vortices 
(pVs) in ferrofluidic Couette flow under influence of external magnetic 
fields. In the current manuscript only pure magnetic fields, either pure 
axial or pure transversal (i.e. symmetry breaking) orientated are 
considered. In particular for the latter the numerical simulations of the 
small-aspect-ratio wide-gap counter-rotating system have revealed a 
sequence of pitchfork and symmetry-breaking Hopf bifurcations as the 
magnetic field strength sx is changed. While in earlier studies in classical 

Fig. 13. Evolution from 6 V2 into pVa
2 at sx = 0.76. As Fig. 9, but for the transient evolution from 6 V2 into pVa

2 at sx = 0.76.  
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TCS and absence of any magnetic fields also asymmetric pVa has been 
observed as stable solutions [29,39], at the bifurcation point the sym
metric pVs were detected to evolve primary stable out of nV states. The 
same holds for pure axial magnetic field. The presence of a symmetry 
breaking transverse magnetic field crucially influence and modify this 
characteristic in favor of a stable asymmetric state, pVa

2, at least close to 
onset. 

A schematic of the bifurcation sequences under transversal magnetic 
field, as discussed above, using sx as bifurcation parameter (decreasing 
from left to right), is shown in Fig. 18. First the base state CCF2 disappear 
with the evolution of sub-critical vortices [29] forming the steady fixed 
point solution 6 V2. Both CCF2 and 6 V2 are invariant under the full 
system symmetry of the problem under transverse magnetic field, 
SO(2)Hx × ZHx

2 × R. At P, the stationary state, 6 V2, undergoes a pitchfork 
bifurcation resulting in the stable limit cycle solution, pVa(∗)

2 , as well as 
the unstable limit cycle solution pVs

2. pVa(∗)
2 brakes the KHx

z symmetry 
and the time invariance Φ of 6 V2. The limit cycle, however, is invariant 
to a combination of the two broken symmetries, consisting of KHx

z 
composed with a half-period time translation SHx . This half-period-flip 
symmetry is then in the following broken in the Hopf bifurcation H 
and two limit cycle solutions pVam

2 and pVam∗
2 result. These are sym

metrically related: pVam,∗
2 = KHx

z pVam
2 . Eventually pVam,∗

2 lose stability 
and move transient to the only remaining stable solution pVs

2, which 
already appeared in P but being unstable close to onset. 

The main main/key features and results regarding propagating 
vortices (pVs) under pure axial or pure transversal magnetic field in 
short aspect TCS can be summarized as follows: 

Axial magnetic field  

• All propagating vortices (pVs) remain 2D.  
• All propagating vortex structures, pVs, always feature same flow 

dynamics and crucially identical symmetry 

Kz (no stable asymmetric pVs could be found).

The first point is true in general, also including modified boundary 
conditions [30]. However, the second point only applies for finite sys
tems with fixed lids at bottom and top. Any change to different boundary 
conditions in axial direction immediately destroys the Kz symmetry. On 
top of this other system parameters may also play a role. 

Transverse magnetic field 

• All propagating vortices (and flow structures [13,14]) are inheren
tially 3D.  

• Different propagating vortex structures can appear coexisting, 
featuring different symmetries: 

(i) pVs
2, with basic system symmetry, KHx

z , under transversal magnetic 
field. 

(ii) pVa
2, with half-period-flip symmetry SHx . 

(iii) pVam
2 , without discrete symmetry, but existing as pair of asym

metric solutions pVam
2 and pVam,∗

2 = KHx
z pVam

2 , 

• A symmetry breaking transverse magnetic field triggers the asym
metric solution pVa

2 to be stable at it’s bifurcation point, while pVs
2 is 

unstable close to onset.  
• pVs

2 and pVa
2 [pVam

2 ] are coexisting over certain parameter range sx. 

Fig. 14. Time series and PSDs of pVa
2 at sx = 0.76. PSDs of (a) Ekin and (b) η+

for the asymmetric propagating flow state pVa
2 close to onset at sx = 0.76. 

Period time τ ≈ 0.171 with corresponding frequency ω ≈ 5.853. Insets show 
time series of Ekin, η+ [red], η− [black]. 

Fig. 15. Comparison between pVa
2 and pVam

2 . (a) Variation and differences in η±
for pVa

2 at sx = 0.65 and pVam
2 at sx = 0.6 before and after the half-period-flip- 

symmetry is broken, respectively. η+(t +τ/2) is η+ shifted by half a period τ/2. 
(b) Extraction of Fig. 16 showing the phase portrait in (η− , η+) around the 
appearance of the two symmetry related states pVam

2 and pVam∗
2 (cf. Fig. 2 in SM 

for further visualizations and characteristics of pVa
2 and pVam

2 ). 
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Important to emphasis, all here studied propagating vortices, either 

under axial or transversal magnetic field condition, are topological 
speaking represented by relative simple limit cycle (1-torus) solutions. 
Neither the fact of symmetric (pVs), alternate (asymmetric) appearing 
vortices (pVa), or even modulation of the latter changes this topology. 

In the second part of this study we focus on the dynamics and 
behavior of propagating vortices under the influence of an oblique 
magnetic field [34] as superposition of axial and transversal magnetic 
field. Such superposition of fields not only result in further non-linear 
interaction and complexer flow solutions it also crucially modifies the 
basic symmetries and more important alters the topology of the solu
tions. Therefore this scenario will be discussed separately in [34]. 

Despite that the here presented results are in good agreement with 
experimental findings, it is worth to point out that any effects of natural 
convection have been neglected. Especially in view of the recent in
crease in the number of non-isothermal situations wherein magnetic fluid 
are put to use in place of classical fluids, natural convection will play a 
role and can significant the flow dynamics. Although for given system 
parameters (basically isothermal conditions) such effects seems to be 
small, further experimental and numerical studies will have to be un
dertaken to investigate the influence of natural convection in ferrofluids 
in the presence of magnetic fields. 
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Appendix A 

A.1. Ferrohydrodynamical equation 

Eq. (1) is to be solved together with an equation that describes the magnetization of the ferrofluid. Using the equilibrium magnetization of an 
unperturbed state in which the homogeneously magnetized ferrofluid is at rest and the mean magnetic moment is orientated in the direction of the 

Fig. 16. Phase space projection for sx ∕= 0. Phase portraits of pVs, pVa
2, and 

pVam
2 for sx as indicated on (a) (η− , η+) and (b) (Ekin,η+). Numbers in the figure 

identify the magnetic field strength sx as indicated (cf. Fig. 6). 

Fig. 17. Variation of ηA with sx for pVs. Evolution of the asymmetry parameter 
ηA with sx for different propagating vortex structures, pVs, pVs

2, pVa
2, pVam

2 and 
6 V2. The vertical arrows indicate the transition scenario when one solution 
loses stability and the flow moves transient towards another stable solution. 

Fig. 18. Schematic bifurcation diagram, using sx as the bifurcation parameter. 
Here first the stationary 6 V2 state appears in a smooth transition out of the 
basic state CCF2. P denotes the pitchfork bifurcation 6 V2 into two stable, 
symmetry related flow states pVa∗

2 = KHx
z pVa

2 (stable) as well the pVs
2 (unstable), 

keeping the basic symmetries. All pV states are periodic and topological 
describe a limit cycle solution. Further a symmetry breaking Hopf bifurcation H 
appears, in which the half-period-flip symmetry SHx of pVa

2 is broken, leading to 
pair of asymmetric solutions pVam

2 and pVam∗
2 = KHx

z pVam
2 , which eventually lose 

stability in favor of the only stable symmetric solution pVS
2. Stable (unstable) 

solution branches are shown as solid (dashed) curves. 
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magnetic field, we have Meq = χH. The magnetic susceptibility χ of the ferrofluid can be approximated by the Langevin’s formula [36], where we set 
the initial value of χ to be 0.9 and use a linear magnetization law. The ferrofluid studied corresponds to APG933 [41]. We consider the near equi
librium approximations of Niklas [8,27] (derived from the theory by Shliomis [6] under the assumption of a stationary magnetization) with a small 
value of ||M − Meq|| and small magnetic relaxation time τ: |∇× u|τ≪1. Using these approximations, one can obtain [17] the following magnetization 
equation determining the relationship between the magnetization M, the magnetic field H, and the velocity u 

M − Meq = c2
N

(
1
2
∇× u × H + λ2SH

)

, (6)  

where 

c2
N = τ

/(
1
/

χ + τμ0H2/6μΦ
)

(7)  

is the Niklas coefficient [8], μ is the dynamic viscosity, Φ is the volume fraction of the magnetic material, S is the symmetric component of the velocity 
gradient tensor [17,35], and λ2 is the material-dependent transport coefficient [42] which can be conveniently chosen to be λ2 = 4/5 [13,14,35,42]. 
Using Eq. (6), we eliminate the magnetization from Eq. (1) to arrive at the following ferrohydrodynamical equations [17,35]: 
(

∂t +u⋅∇
)

u − ∇2u+∇pM = −
s2

N

2

[

H∇⋅
(

F +
4
5

SH
)

+ H ×∇×

(

F +
4
5

SH
)]

, (8)  

where F = (∇ × u/2) × H and sN is the Niklas parameter [Eq. (11)]. pM is the dynamic pressure incorporating all magnetic terms that can be expressed 

as gradients including the corresponding part of the Kelvin force (M⋅∇)H resulting from the equilibrium magnetization; pM = p − p̃, with 2
(

Meq⋅ 

∇
)
H = χ

(

H2)∇H2 = :
∂̃p

∂H2 ∇H2 = ∇p̃. To the leading order, the internal magnetic field in the ferrofluid can be approximated by the externally 

imposed field [28], which is reasonable for obtaining the dynamical solutions of the magnetically driven fluid motion. Eq. (8) can then be simplified as 
(

∂t +u⋅∇
)

u − ∇2u+∇pM = s2
N

{

∇2u −
4
5
[∇⋅(SH)] − H ×

[
1
2
∇×

(

∇× u × H
)

− H ×

(

∇2u
)

+
4
5
∇×

(

SH
)]}

. (9)  

This way, the effect of the magnetic field and the magnetic properties of the ferrofluid on the velocity field can be characterized by a single parameter, 
the magnetic field or the Niklas parameter [8]: 

s2
N = s2

x + s2
z , (10)  

with 

s2
x =

2(2 + χ)HxcN

(2 + χ)2
− χ2η2

, s2
z = HzcN . (11)  

Note that in this study we are only investigating pure axial or pure transverse magnetic field, which means that either sx = 0 or sz = 0, respectively. 
Worth to emphasize the limitation of the Niklas approximation, which results from the stationary case and for small deviations of the magneti

zation near equilibrium, from one relaxation equation with one relaxation time. Thus the relaxation into equilibrium is determined by a relaxation 
constant that can depend on the magnetic field. 

A.2. Numerical methods 

The ferrohydrodynamical equations of motion Eq. (8) can be solved [13,17,28] by combining a standard, second-order finite-difference scheme in 
(r, z) with a Fourier spectral decomposition in θ and (explicit) time splitting. The variables can be expressed as 

f

(

r, θ, z, t

)

=
∑mmax

m=− mmax

fm

(

r, z, t

)

eimθ, (12)  

where f denotes one of the variables {u,v,w,p}. For the parameter regimes considered, the choice mmax = 16 provides adequate accuracy. We use a 
uniform grid with spacing δr = δz = 0.02 and time steps δt < 1/3800. For diagnostic purposes, we also evaluate the complex mode amplitudes fm,n(r, t)
obtained from a Fourier decomposition in the axial direction: 

fm

(

r, z, t

)

=
∑

n
fm,n

(

r, t

)

einkz, (13)  

where k = 2πd/λ is the axial wavenumber. 
For code validation we also compared SPI solutions with experiments [15,43] and previous numerical simulations. In addition the non-linear 

primary bifurcating solutions (TVF and SPI) were compared with the respective stability boundaries of the linearized NSE obtained by a shooting 
method [12]. The bifurcation thresholds for both primary vortex structures in TCS were found to lie about 0.5% below the respective linear stability 
thresholds, whereby the mesh size has been continuously reduced towards finer discretizations until no further variation in the results and thus 
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deviation from the linear thresholds could be detected. In addition further investigation of the nonlinear solutions change when varying mmax and/or 
the grid spacing revealed that typical SPI frequencies have an error of less than about 0.2%. Time steps were always well below the von Neumann 
stability criterion and by more than a factor of 3 below the Courant-Friederichs-Lewy criterion. 

Note that for a ferrofluids in presence of a transverse magnetic field (sx ∕= 0), the symmetries present in classical TCS (arbitrary rotations about the 
axis and the reflections about axial mid-height) are broken and the flow is inherently three-dimensional for any combination of non-zero values of the 
parameters Rei,Reo and sx [13,16,28,17]. A study of pVs under oblique magnetic fields (sx ∕= 0 ∕= sz) results in even complexer scenarios due to 
further non-linear mode-interactions [13,34]. 

Appendix B. Supplementary data 

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.jmmm.2021.167769. 
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