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Abstract: Control of buoyancy-assisted convective flow and the associated thermal behavior
of nanofluids in finite-sized conduits has become a great challenge for the design of many
types of thermal equipment, particularly for heat exchangers. This investigation discusses
the numerical simulation of the buoyancy-driven convection (BDC) of a nanofluid (NF)
in a differently heated cylindrical annular domain with an interior cylinder attached with
a thin baffle. The annular region is filled with non-Darcy porous material saturated-
nanofluid and both NF and the porous structure are in local thermal equilibrium (LTE).
Higher thermal conditions are imposed along the interior cylinder as well as the baffle,
while the exterior cylinder is maintained with lower or cold thermal conditions. The
Darcy–Brinkman–Forchheimer model, which accounts for inertial, viscous, and non-linear
drag forces was adopted to model the momentum equations. An implicit finite difference
methodology by considering time-splitting methods for transient equations and relaxation-
based techniques is chosen for the steady-state model equations. The impacts of various
pertinent parameters, such as the Rayleigh and Darcy numbers, baffle dimensions, like
length and position, on flow, thermal distributions, as well as thermal dissipation rates are
systematically estimated through accurate numerical predictions. It was found that the
baffle dimensions are very crucial parameters to effectively control the flow and associated
thermal dissipation rates in the domain. In addition, machine learning techniques were
adopted for the chosen analysis and an appropriate model developed to predict the outcome
accurately among the different models considered.

Keywords: annulus; baffle; porosity; machine learning; numerical technique

MSC: 37M05; 37M10; 37M20

1. Introduction
Buoyancy-induced convection in finite, closed conduits of different shapes has been

investigated experimentally as well as theoretically for the last several decades. This interest
among researchers mainly reflects the advantage of the use of cooling processes without
any aiding external mechanisms in these processes. Further, due to the lower thermal
conductivity of traditional or conventional fluids, a significant challenge is posed for cooling
the model electronic equipment. The invention of NFs or nanoliquids, which involve a
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base-fluid and nano-sized particles of oxides or metals, provides a very effective means
of replaceing these conventional fluids [1] to achieve comparatively higher cooling rates.
The superior thermal conductivity of NFs has led to many important investigations and
produced qualitative as well as quantitative information about the choice of nanoparticle
(NP) and the optimal concentration to yield higher thermal transport rates [2,3]. Among
the various finite-sized conduits, an annular space formed between two co-axial cylindrical-
shaped tubes is applied in many important thermal applications, from nuclear reactors
to crystal growth design equipment [4–6]. Augmentation of the thermal dissipation rate
(TDR) by the inclusion of NFs is the major driver behind these investigations.

The thermal management of electronic equipment is one of the fundamental require-
ments of the electronics industry, the application of which has increased in recent times.
To cater to the needs of modern electronic industries, among the several strategies tried
by numerous researchers and scientists, attaching a baffle in one or more of the thermally
active walls of the enclosure has been found to provide a better way to enhance the thermal
transport rates. In this direction, one of the pioneering studies to analyze the impacts of a
baffle in a tall tiled rectangular conduit is that of Scozia and Frederick [7]. The numerical
prediction was carried out by considering up to 20 conducting baffles and it was concluded
that decreasing the spacing between the baffles or increasing the baffles tends to produce a
multi-cellular flow structure and reduction in the overall TDR. For a similar geometrical
structure, Facas [8] reported the impacts of three baffles attached alongside hot and cold
boundaries considering three different lengths, and concluded that a longer baffle induces
a multi-cellular structure and produces higher TDRs compared to other baffle dimensions.
Later, a full-blown analysis of the size and positional influences of a thin baffle on BDC and
TDR in a square conduit was performed and it was concluded that an optimum dimension
of baffle could be found at which the thermal transport rate could be significantly enhanced
compared to non-baffle situations [9,10].

Further to the enhancement of TDR shown by fixing baffles to the active boundaries
of the conduits, replacing the traditional working fluids by novel NFs was suggested to fur-
ther improve the heat transfer, with an enhancement in TDR by as much as 10–20 percent
demonstrated with use of NFs in [11]. The impacts of the fin height and NP concentra-
tion on the enhancement of TDR were examined by considering two different NPs in
a rectangular conduit with longer fins predicted to induce heat transport in [12]. A 3D
mixed convective flow in a perforated heat sink with several cylindrical-shaped fins was
quantiatively analyzed by Bakhti and Si-Ameur [13] considering three NFs. A detailed
combined conduction-convection analysis identified that use of Cu NPs induced higher
TDR compared to other NPs, and predicted an enhanced frictional effect as well as NF
movement with an increase in the Reynolds number. In a 3D triangular conduit, having a
stationary as well as a rotating fin, Kolsi et al. [14] numerically predicted the fin conditions
as well as the NP concentration to enhance the TDR. The combined influences of a moving
boundary, adiabatic projection at the lower boundary, and an adiabatic baffle on the NF
buoyant-flow and associated TDR in a square conduit showed that the energy transport in
the chamber could be effectively determined by the dimensions of the adiabatic block as
well as the position of the baffle [15]. Hussein et al. [16] presented a numerical examination
of BDC in a slanted rectangular conduit with a baffle which was filled with two different
nanofluids to predict the thermal behavior relative to the baffle dimensions. In many situa-
tions, the combined influences of magnetic fields and baffle(s) provide an effective method
for controlling convective heat transfer in NF-filled finite geometries, as demonstrated by
numerous research studies [17,18]. The optimal control of buoyant-assisted convection
by utilizing single or multiple baffle(s) in various geometrical shapes, such as cylinders
[19], wavy conduits [20], and vented domains [21] has been examined. The choice of
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the different geometrical configurations in the above studies stems from the necessity to
achieve enhanced heat transfer rates, maintain economic viability in production, ensure
ease of manufacture, and optimize operational performance.

The utilization of one or multiple baffles in confined NF-filled porous geometries has
emerged as a prominent research arena, motivated by the extensive potential engineering
applications to improve the thermal efficiency. The porous materials, characterized by their
unique structural properties and enhanced thermal transport capabilities, are present in many
critical systems, including shell-and-tube heat exchangers, flat-plate solar collectors, and nu-
clear reactor cooling channels. Recognizing these advantages, researchers have systematically
investigated various aspects of porous media and their integration with conductive or non-
conductive baffle(s) to achieve optimum heat transfer intensification [22–24]. Mahalakshmi
et al. [25] examined the characteristics of MHD mixed convection in a lid-driven porous
conduit with a center heater to demonstrate the collective effects of the magnetic force
strength, heater orientation, and nanofluid properties on thermal transport performance.
The investigation predicted that a horizontal heater arrangement would achieve maximum
heat transfer enhancement, and that the magnetic force effectively controls the convective
movements within the porous medium. Aly et al. [26] numerically investigated BDC in
a nanofluid-filled porous cavity with different heated fin shapes using a modified ISPH
technique. Their analysis revealed that an H-fin shape maximizes the flow circulation rate
while a Z-fin shape achieved the highest heat transfer rate. Subsequently, a CFD analysis
conducted on magneto-convection in a slanted porous conduit with two conducting fins
showed enhanced heat transfer with optimal fin configurations, such as fin space and
dimensions, and cavity inclination of 30◦, demonstrating superior performance compared
to no-fin configurations [27].

Recently, porous fins have often been utilized in place of metal fins in thermal applica-
tions due to several key advantages, including the enhanced surface area provided by the
internal pores, improved fluid mixing through tortuous flow paths, and reduced weight
and material costs, among many other advantages [28,29]. Further, the incorporation of
porous substance within irregular geometric configurations for analyzing buoyancy-driven
NF convection represents a significant research domain with multidisciplinary implications,
including enhanced geothermal systems, advanced heat exchangers, and microfluidic
devices [30–32]. The detailed utilization of baffle(s) in controlling BDC flow and associated
thermal transport in a variety of geometries filled with diverse NFs, and by considering
different constraints, has been reported in comprehensive reviews [33,34]. An exhaustive,
systematic review of the literature on the implications of various shaped baffle(s) across
diverse porous and non-porous NF-filled geometrical configurations reveals a significant
research gap. Specifically, the analysis of BDC within baffled porous annular geometries,
particularly when integrated with a generalized porous media model and machine learning
approaches, remains largely unexplored. Despite the significant industrial and engineering
relevance of this configuration, the critical intersection of porous media dynamics, baffle
design, and computational methodologies has received insufficient scholarly attention. The
current examination addresses this substantial knowledge gap by presenting a compre-
hensive analysis that bridges traditional fluid dynamics with modern machine learning
techniques in the context of baffled NF-saturated porous annular systems.

Despite high-quality outputs from CFD simulations for an individual set of parameters,
their inherently high computational cost (which can typically process each simulation case
in hours) is often a major obstacle. Running CFD simulations for each new operating
condition or design iteration is usually prohibitively expensive in computational time, so
a full exploration or fast decision-making becomes out of reach. This is where ML can
provide significant potential improvements, taking the shape of powerful surrogate models.
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Once they have been trained on a representative dataset created by high-fidelity CFD
simulations, the ML models can predict the overall performance metrics (e.g., Average
Nusselt Number) in a fraction of the time (in many cases, orders of magnitude faster,
<0.1 s/prediction). This fast prediction time, even though for an individual point it is less
accurate than a full CFD approach, allows for tasks which seemed impossible, such as
performing a full exploration of design space to identify new relationships or optimal space,
the rapid screening of many design candidates to identify promising designs for more
in-depth CFD analysis, or even for use in real-time processes where an instant response is
needed. Thus, the ML approach is not meant to replace the ability of CFD for accurate, final
validation of some chosen designs; it is instead intended to complement the capabilities
of CFD by allowing efficient, large-scale investigation or dynamic applications that are
beyond the practical application possibility of direct, iterative CFD simulations.

2. Mathematical Formulation of the Problem
2.1. Governing Model Equations

The present study examines BDC flow and thermal transfer in an annular configuration
consisting of two upright cylinders arranged concentrically, with inner and outer radii
represented as ri and ro, as illustrated in Figure 1. The configuration also includes a
thin circular baffle attached to the inner cylinder, whose dimension and location can
be adjusted to study their impacts on the fluid flow and heat transport characteristics.
The thermal boundary conditions are established such that the inner cylinder and baffle
are maintained at an elevated temperature, while the outer cylinder is kept at a lower
temperature. However, the top and bottom cylindrical surfaces are considered to be both
thermally insulated and rigid.

(a) 3D Annular baffled-geometry (b) Axi-symmetric view

Figure 1. Schematic representation of the baffled annular geometry: (a) three-dimensional view
depicting the physical domain, and (b) axisymmetric cross-sectional view with thermal boundary
conditions and characteristic dimensions.

The annular portion is filled with an NF-saturated porous material, where silver (Ag)
NPs are dispersed in H2O as the base-fluid. The analysis assumes local thermal equilibrium
between the NPs and the base-fluid. The flow is considered to be two-dimensional and
laminar, with constant thermophysical properties except for density variabilities, which are
accounted for using the Boussinesq approximation. The relevant thermophysical properties
of both the NPs and H2O are provided in Table 1. The thermophysical properties of NFs
depend on the volume fraction of NPs (ϕ) and the properties of both the base-fluid ( f ) and
the NPs (p). Table 2 summarizes these properties with the corresponding mathematical
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models adopted in the current analysis, with the subscripts n f , f , and p denoting nanofluid,
base-fluid, and nanoparticle, respectively.

Table 1. Physical properties of H2O and Ag.

Physical Properties H2O Ag

Cp (J/Kg K) 4179 235
ρ (Kg/m3) 997.1 10,500
k (W/mK) 0.613 429
β (1/K) 21× 10−5 1.89× 10−5

Table 2. Thermophysical properties of NFs and the adopted models.

Properties of NFs Volume Averaged Models

Density ρn f = (1− ϕ)ρ f + ϕρp

Thermal expansion coefficient (ρβ)n f = (1− ϕ)(ρβ) f + ϕ(ρβ)p

Heat capacitance (ρCp)n f = (1− ϕ)(ρCp) f + ϕ(ρCp)p

Thermal conductivity
kn f
k f

=
kp+2k f−2ϕ(k f−kp)

kp+2k f +ϕ(k f−kp)

Viscosity µn f =
µ f

(1−ϕ)2.5

Thermal diffusivity αn f =
kn f

(ρCp)n f

To describe the flow through the porous medium, we employ the Darcy–Brinkman–
Forchheimer model, which comprehensively accounts for viscous, inertial, and non-linear
drag forces. Based on these assumptions and physical considerations, we develop the
governing equations following similar approaches to those found in the contemporary
literature on porous media flow and heat transfer [2,35]. The dimensional form of the
model equations for the present analysis are as follows:

∇ · q⃗ = 0 (1)
ρn f

ϵ

[
∂−→q
∂t∗

+
1
ϵ
(−→q · ∇)−→q

]
= −∇p +

µn f

ϵ
∇2

1
−→q −

µn f

K
−→q

−
ρn f F−→q |−→q |
√

K
+ (ρβ)n f

−→g (θ − θc) (2)

σ
∂θ

∂t∗
+ (−→q · ∇)θ = αn f∇2

1θ (3)

where ϵ and K are, respectively, the porosity and permeability, σ =
(ρcp)e f f
(ρcp)n f is assumed to

be unity by considering the thermal properties of NF and solid matrix to be identical, and F

is the Forchheimer coefficient and is given by F =
1√

150ϵ3/2
. Also,∇2

1 =
∂2

∂r2 +
1
r

∂

∂r
+

∂2

∂z2

The following dimensionless transformations are utilized to transform the
Equations (1)–(3) to recast to dimensionless form.

(R, Z) =
(r, z)

D
, (U, V) =

(u, v)D
α f

, t =
t∗α f

D2 , T =
(θ − θc)

(θh − θc)
, P =

pD2

ρn f α2
f

(4)
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Using the transformations (4), the dimensionless model equations assume the follow-
ing form:

∂U
∂R

+
∂V
∂Z

+
U
R

= 0 (5)

1
ϵ

[
∂U
∂t

+
1
ϵ

(
U

∂U
∂R

+ V
∂U
∂Z

)]
= − ∂P

∂R
+

µn f

ρn f α f ϵ

(
∇2U − U

R2

)
−

µn f

ρn f α f Da
U

−
(

1.75
√

U2 + V2
√

Da
√

150ϵ3

)
U (6)

1
ϵ

[
∂V
∂t

+
1
ϵ

(
U

∂V
∂R

+ V
∂V
∂Z

)]
= − ∂P

∂Z
+

µn f

ρn f α f ϵ
∇2V −

µn f

ρn f α f Da
V

−
(

1.75
√

U2 + V2
√

Da
√

150ϵ3

)
V +

(ρβ)n f

ρn f β f
Ra · Pr

∂T
∂R

(7)

∂T
∂t

+ U
∂T
∂R

+ V
∂T
∂Z

=
αn f

α f
∇2T (8)

For BDC modeling, generally, the pressure terms are eliminated through cross-
differentiation, and a new physical quantity known as vorticity is introduced. Vorticity
is physically introduced at the walls and diffused into NF stream. Also, introducing a
two-dimensional stream function in the cylindrical polar co-ordinates, the non-dimensional
vorticity-stream function equations are as follows:

1
ϵ

[
∂ζ

∂t
+

1
ϵ

(
U

∂ζ

∂R
+ V

∂ζ

∂Z
− Uζ

R

)]
=

µn f

ρn f α f ϵ

[
∇2ζ − ζ

R2

]
−

µn f

ρn f α f Da
ζ

−
(

1.75
√

U2 + V2
√

Da
√

150ϵ3

)
ζ −

(ρβ)n f

ρn f β f
Ra · Pr

∂T
∂R

(9)

ζ =
1
R

[
∂2ψ

∂R2 −
1
R

∂ψ

∂R
+

∂2ψ

∂Z2

]
. (10)

U =
1
R

∂ψ

∂Z
, V = − 1

R
∂ψ

∂R
(11)

In the above equations,∇2 =
∂2

∂R2 +
1
R

∂

∂R
+

∂2

∂Z2 , Ra =
gβ f ∆θD3

ν f α f
, Da =

K
D2 and Pr =

ν f

α f
.

2.2. The Dimensionless Auxiliary Conditions

(i) Initial and hydrodynamic boundary conditions

At t = 0, U = V = T = 0, ψ = ζ = 0;
1

λ− 1
≤ R ≤ λ

λ− 1
, 0 ≤ Z ≤ A

At t > 0, ψ =
∂ψ

∂R
= 0, at R =

1
λ− 1

and
λ

λ− 1
, 0 ≤ Z ≤ A and at baffle boundaries

ψ =
∂ψ

∂Z
= 0, at Z = 0 and Z = A

(ii) Thermal boundary conditions at t > 0

R =
1

λ− 1
R =

λ

λ− 1
On the baffle Z = 0 and A

T = 1 T = 0 T = 1
∂T
∂Z

= 0
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2.3. Thermal Transport Rates

In any thermal system, the quantitative measure to evaluate the thermal efficiency as
well as the heat transport rate is predicted by estimating the local (Nu) and overall Nu
numbers. These quantities are defined as follows:

Nu =
1
A

∫ A

0
Nu dZ, where Nu = −

kn f

k f

(
∂T
∂R

)
(12)

3. Description of Numerical Methodology
3.1. Finite Difference Methodology

The mathematical modeling of BDC phenomena within the complex nanofluid-
saturated porous baffled annular domain poses significant computational difficulties. To
address these challenges, our investigation adopts a robust hybrid numerical method-
ology that combines different finite difference (FD) techniques for a stable and accurate
solution. The governing partial differential equations (PDEs) consist of non-linear and
coupled vorticity transport, energy balance, and stream function equations. In particular,
the vorticity-transport equation incorporates Darcy–Forchheimer–Brinkman terms to ac-
count for porous media effects, and additional terms to model the modified thermophysical
properties of NF. Further, the baffled annular configuration also introduces additional
complexities through the boundary conditions at the baffle interfaces.

Our solution methodology employs a domain discretization using a uniform grid
across the entire annular region and special care has been taken while assigning grids
along the baffle. For the temporal and spatial discretization, we adopt the following FD
approximations:

1. Temporal Derivative: Forward difference quotients are implemented for all time-
dependent terms, resulting in first-order accuracy in time (∆t).

2. Spatial Derivatives: Central difference schemes are utilized for spatial derivatives,
providing second-order accuracy (∆R2 and ∆Z2) in the computational domain.

The solution methodology strategically integrates two different numerical techniques:

1. Alternating-Direction Implicit (ADI) Procedure: The parabolic nature of the vorticity
and energy transport equations has been integrated by a two-step ADI scheme. In
the first half-time step, the FD equations are solved implicitly in the R-direction while
treating the Z-direction terms explicitly. In the second half-time step, the process is
reversed, ensuring unconditional stability while maintaining computational efficiency.

2. Successive Line Over-Relaxation (SLOR): The elliptic stream function equation is
solved using SLOR, where each grid line is solved implicitly while sweeping through
the domain. An optimal over-relaxation parameter (ω) between 1.0 and 2.0 was
dynamically adjusted to accelerate convergence based on the control parameters of
the chosen problem.

The FD discretization process transforms the PDEs into systems of linear algebraic
equations with tri-diagonal coefficient matrices. These systems are efficiently solved using
the popular Thomas algorithm (tri-diagonal matrix algorithm or TDMA), which provides
direct solutions.

The iterative solution process employs dual convergence criteria for transient as well
as stationary cases:

1. For transient PDEs, iterations are carried out until: max |Φn+1
i,j −Φn

i,j| < Γ1, where Φ
represents either vorticity or temperature, and Γ1 is a predefined temporal tolerance,
typically set at 10−6.
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2. For the stream-function equation, spatial convergence is achieved when: max |ψk+1
i,j −

ψk
i,j| < Γ2, where k denotes the special iteration level and Γ2 is the spatial tolerance,

typically set at 10−8.

An in-house code in ForTran was developed to systematically invert the system of
equations arising from the different model equations. The algorithm implementation
follows a sequential approach where the energy and vorticity equations are advanced
in time, followed by stream function updates and velocity-stream function relations at
each time step, ensuring proper coupling between the momentum and energy transport
mechanisms in the complex NF-saturated porous annular domain. Before the simulations,
a systematic and proper grid independence trial was conducted by choosing coarse to
fine grids from 51× 51 to 201× 201 and an optimum grid structure was chosen based
on the solution accuracy and computational time. For choosing the optimal grid size, we
identified the average Nu and |psimax| as the sensitive measure to decide the appropriate
grid size. Based on these careful experiments, we found a grid size of 161× 161 satisfactorily
provided the accurate predictions as compared to the other grid sizes. However, the details
pertaining to the grid independence tests are not provided here for brevity, but can be
found in our recent studies [5,35,36].

3.2. Validation

To validate the current simulation outcomes, in this section, we report several impor-
tant trial simulations to compare, qualitatively as well as quantitatively, with standard
benchmark predictions existing in the literature, which are illustrated through Table 3 and
contour illustrations (Figure 2), to support the credibility of the in-house developed code.
In this regard, first, we modified our code with uniform heating and cooling, without the
presence of a baffle (δ = 0), for a uniformly heated-cooled non-baffled annulus and square
geometry. We performed simulations for a thermal-buoyancy-assisted convection and
obtained the thermal transport rates for an annular geometry without baffle (δ = 0) to
compare with the quantitative predictions of Abouali and Falahatpishesh [4]. Our predic-
tions in the annular conduit for different magnitudes of Ra and ϕ are found to be in fair
agreement with the numerical outcomes of Abouali and Falahatpishesh [4], as displayed in
Table 3, with minimum allowable deviations.

Furthermore, in another comparison with a square geometry, we performed additional
simulations, by putting λ = 0, to mimic the contour simulations of Nguyen et al. [2] for a
square geometry containing Cu-H2O NF, and present the same in Figure 2. The comparative
predictions of the streamlines and isotherms vividly reveal the excellent similarity between
our simulations and the predictions of Nguyen et al. [2] for two different NP concentrations.
These qualitative and quantitative validations with systematic grid independence tests
ensure the authenticity of our in-house code and provide confidence to perform further
simulations in this investigation.

Table 3. Validation of average Nu with Abouali and Falahatpishesh [4] for different magnitudes of
Ra and ϕ.

Ra Average Nusselt Number (Nu) Relative
(Gr × Pr) Abouali and Falahatpishesh [4] Present Study Difference (%)

6× 103 2.867 2.884 0.59 ϕ = 0.00
2.729 2.740 0.40 ϕ = 0.02

6× 104 5.439 5.480 0.75 ϕ = 0.00
5.176 5.184 0.14 ϕ = 0.02

6× 105 10.315 10.402 0.83 ϕ = 0.00
9.818 9.913 0.96 ϕ = 0.02
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Figure 2. Streamlines (top) and isotherms (bottom) at Ra = 109, Da = 10−6 and ϵ = 0.4 of present
study (left) with Nguyen et al. [2] (right) for base-fluid (solid curve) and Cu-H2O NF with ϕ = 0.025
(dashed curve) and ϕ = 0.05 (dash-dotted curve).

3.3. Proposed Machine Learning Methodology

The proposed methodology outlined in this study investigates whether machine
learning techniques can be used to predict the mean Nusselt number, a critical indicator of
heat transfer performance, within a cylindrical annular domain. This approach employs
a thorough data-driven pipeline consisting of data analysis and preprocessing, model
training, hyperparameter tuning, and model validation. We use a conventional machine-
learning algorithms in addition to a deep learner that relates the dependent variables (e.g.,
Rayleigh number, baffle length, etc.) to the predictee. The primary motivation for this is to
develop reliable and accurate predictive models to support thermal equipment designers.

The preprocessing step is essential for maintaining the quality of data and readiness
for model training. Our first step is exploratory data analysis to develop an understanding
of individual feature distributions, potential outliers, and correlations across features. The
dataset also contains missing values, and therefore, we impute for missing values. Next, we
standardize the data to have a mean of zero and a variance of one. This step is important
because it helps ensure that features with larger magnitudes do not dominate the learning
process, especially with distance-based algorithms and neural networks. Lastly, a train–test
split is completed to separate the dataset into independent train and test datasets which is
crucial to create an unbiased evaluation of model generalization performance.

We utilized a range of machine learning models to predict the mean Nusselt number.
This list of models includes ensemble models such as Random Forest and Gradient Boosting,
known for their robustness to complexities and ability to capture non-linearities. A Support
Vector Regressor (SVR) is also considered as it allows flexibility in modeling different kinds
of relationships through kernel functions. Additionally, we implement a Ridge Regression
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model as a baseline linear model to compare against the more complex models. Finally, we
developed an Artificial Neural Network (ANN) to test the capabilities of deep learning.

Hyperparameter optimization is conducted for each model to maximize performance.
Instead of an exhaustive grid search, we opted for a randomized search. This method
still allows for exploration of the hyperparameter space by choosing a fixed number of
hyperparameter combinations to sample. This method represents a good trade-off of
computational cost and probability of finding near-optimal hyperparameters. A repeated
k-fold cross-validation is also used for model hyper-parameter tuning to provide a robust
estimate of model performance and counteract overfitting to the training data.

Model performance is evaluated using a comprehensive suite of metrics, including
R-squared (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). These metrics are defined as follows, where yi

represents the true value, ŷi represents the predicted value, and n is the number of samples:

• R-squared (R2): Measures the proportion of variance in the dependent variable that is
predictable from the independent variables. A value of 1 indicates a perfect fit.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (13)

where ȳ is the mean of the true values.
• Root Mean Squared Error (RMSE): Represents the square root of the average squared

difference between the predicted and actual values. Lower values indicate better fit.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (14)

• Mean Absolute Error (MAE): Represents the average absolute difference between the
predicted and actual values. Lower values indicate better fit.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (15)

• Mean Absolute Percentage Error (MAPE): Represents the average absolute percentage
difference between the predicted and actual values. Lower values are better, with 0%
indicating a perfect fit.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (16)

These evaluation metrics each provide different insights about different aspects of
model accuracy. In addition to these metrics, we also look at the residuals in order to
evaluate the stated assumptions of the model and examine any systematic biases. The best
overall model is determined by sufficient overall performance against these metrics, with
emphasis on generalization ability on the hold-out test set.

The proposed methodology is summarized in Algorithm 1, PREDICT NUSSELT NUM-
BER, which outlines the complete workflow for predicting the average Nusselt number.
It begins with data analysis and preprocessing, including splitting the data into training
and testing sets and applying a preprocessing pipeline for imputation and scaling. The
core of the algorithm involves iterating through a set of predefined models, including both
traditional machine learning algorithms and an Artificial Neural Network (ANN). For
each model, hyperparameter optimization is performed using randomized search with
cross-validation, except for the ANN, which is trained with techniques like early stopping.
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Algorithm 1 Predicting average Nusselt number

1: Input: Dataset D = {(xi, yi)}N
i=1, where xi is a feature vector and yi is the Nusselt

number.
2: Output: Best predictive model M∗, evaluation metrics.
3: procedure PREDICTNUSSELTNUMBER(D)
4: Danalysis ← D ▷ Copy for analysis
5: Perform data analysis on Danalysis (histograms, correlation matrix, etc.)
6: X, Y ← Separate features (X) and target (Y) from D
7: Xtrain, Xtest, Ytrain, Ytest ← Split X, Y into training and testing sets (e.g., 80/20 split)
8: Preprocessor ← Create preprocessing pipeline (imputation, scaling)
9: Xscaled

train ← Preprocessor. f it_trans f orm(Xtrain)

10: Xscaled
test ← Preprocessor.trans f orm(Xtest)

11: Models← {RandomForest, GradientBoosting, SVR, Ridge, ANN}
12: BestModels← {}
13: Results← {}
14: for M ∈ Models do
15: if M is ANN then
16: Define ANN architecture (layers, activation functions, etc.)
17: Compile ANN model (optimizer, loss function)
18: Train ANN with cross-validation, early stopping, and learning rate scheduling
19: BestModels[M]← Trained ANN
20: else
21: Define hyperparameter search space for M
22: Perform randomized search with cross-validation to find best hyperparameters
23: BestModels[M]←Model M with best hyperparameters
24: end if
25: Evaluate BestModels[M] on Xscaled

train , Ytrain and Xscaled
test , Ytest

26: Store evaluation metrics (R2, RMSE, MAE, MAPE) in Results[M]
27: end for
28: M∗ ← Select best model based on evaluation metrics (e.g., lowest MAE on test set)
29: return M∗, Results
30: end procedure

Algorithm 1 then evaluates each trained model on both the training and testing sets,
storing the results. Finally, it selects the best-performing model based on a chosen evalua-
tion metric (e.g., MAE on the test set) and returns this model along with the comprehensive
evaluation results for all models. This structured approach ensures a rigorous and repro-
ducible methodology for model development and selection.

3.4. Implementation Details

The developed ML models are proposed to predict the Average Nusselt Number (Nu).
The used dataset was split into a training set, 80% of the samples, and a test set, 20% of the
samples. The splitting of the data was completed using the scikit-learn train_test_split
function. Then, a preprocessing stage was executed, where all input features were standard-
ized using scikit-learn’s StandardScaler. For those models that were developed rather
than the neural network-based model, namely, Random Forest, Gradient Boosting, SVR,
and Ridge Regression, a hyperparameter search was conducted using RandomizedSearchCV
provided by scikit-learn. RandomizedSearchCV evaluates a prespecified set of hyperparam-
eter values for each model, on the training dataset (employing a 5-fold cross-validation).
The goal was to determine a set of hyperparameter values that maximized the R2 score. The
key hyperparameters that were tuned included n_estimators, max_depth for the various
ensemble-based models, learning_rate for GradientBoosting, C, γ and kernel type for
SVR, and α for the regularization strength in the Ridge Regression.
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The proposed ANN architecture was constructed as a sequential multi-layer percep-
tron model with the TensorFlow Keras API. The architecture consisted of an input layer
with three hidden dense layers (e.g., consisting of 128, 64, and 32 neurons, respectively)
with 1 dense output layer with a linear activation function for the regression problem.
The activation function in the hidden layers was the ReLU (Rectified Linear Unit). To
reduce overfitting, the model had L2 regularization applied to the weights of the hidden
layers, batch normalization following the hidden dense model, and dropouts (e.g., with 0.2
probability rate) between the hidden dense layers. The ANN model was compiled with an
initial learning rate of the Adam optimizer, with the goal of minimizing the mean squared
error. Training had a predetermined upper limit for the epoch (i.e., 500 maximum epochs)
and employed a count to the batch size of the training samples.

4. Results and Discussion
The current analysis involves nine dimensionless parameters, namely, the Rayleigh

(Ra), Darcy (Da), and Prandtl (Pr) numbers, the baffle length (δ) and location (L), porosity
(ϵ), NP concentration (ϕ), aspect (A) and radii (λ) ratios, and a full-blown parametric
study along with ANN modeling, which would be a formidable task. Hence, in our analysis,
the parameters, A, Pr and λ are fixed at 1, 6.2, and 2, respectively. However, the ranges of
the other parameters are as follows: 103 ≤ Ra ≤ 106, 10−5 ≤ Da ≤ 10−1, 0 ≤ ϕ ≤ 0.05,
0.2 ≤ L, δ ≤ 0.8, 0.1 ≤ ϵ ≤ 0.9. These parametric ranges would highlight the weaker,
meager, and stronger impacts of all pertinent parameters on the qualitative as well as
quantitative predictions.

4.1. CFD Simulation Results
4.1.1. Impact of Control Parameters on Flow and Thermal Contours

In the streamline contour graphs, the positive and negative values have important
physical meanings. The positive streamlines indicate counterclockwise rotation of fluid,
representing the fluid motion in the counterclockwise direction. However, the negative
streamlines refer to clockwise circulation of fluid, indicating fluid movement along the
clockwise direction.

The flow and thermal contours depicted in Figure 3 illustrate the significant influence
of Ra on the flow and thermal characteristics within the annular domain (the arrows in
the streamline plots highlight the direction of the vortex rotation in the annulus). At
Ra = 103, the flow exhibits a single primary circulation vortex with relatively symmetric
and organized patterns, suggesting a conduction-dominated thermal transport regime.
The isotherms at this lower Ra appear nearly vertical with minimal distortion, further
confirming the dominance of conductive heat transfer. The presence of a baffle introduces
only minor perturbations in both flow and thermal distributions, while maintaining the
overall stability of the system. In contrast, at Ra = 106, the flow structure undergoes a
substantial transformation. The streamlines reveal the formation of multiple circulation
cells with significantly higher flow intensities, evidenced by the densely packed streamline
contours. The flow field exhibits pronounced distortion near the baffle, indicating strong
convective currents. The corresponding isotherms at this higher Ra display substantial
distortion and clustering, particularly near the walls and baffle, resulting in the formation of
distinct thermal boundary layers and enhanced temperature stratification in the core region.
This behavior clearly signifies the transition to a convection-dominated heat transfer regime.
The comparison between base-fluid (ϕ = 0, continuous curves) and NF (ϕ = 0.05, dotted
curves) reveals subtle yet important differences in both flow and thermal characteristics.
Although the overall flow structure basically remains similar, the presence of NPs modifies
the flow patterns and enhances the heat transfer characteristics. This enhancement is
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particularly evident in the high Ra case, where the NF demonstrates improved thermal
mixing and heat transfer capabilities.

(a) Ra = 103 (b) Ra = 106

Figure 3. Effect of Rayleigh number on streamlines and isotherms at L = δ = 0.5, ϵ = 0.4, Da = 10−2.
Continuous and dotted curves, respectively, represent ϕ = 0 and ϕ = 0.05 (the arrows in the upper
figures highlight the direction of the vortex rotation in the annulus).

The analysis of the Da influence on the flow features and thermal patterns reveals
compelling insights into porous material behavior, as illustrated in Figure 4. At a higher
Darcy number (Da = 10−1), manifesting enhanced permeability, the NF flow exhibits
complex patterns characterized by dual circulation cells and pronounced flow distortions,
particularly near the boundary regions. The corresponding isotherm contours exhibit
strong clustering, indicating the presence of steep thermal gradients across the domain.
The impact of different porosities (ϵ = 0.4 and ϵ = 0.9) becomes significant at this higher
Darcy number, with higher porosity resulting in more intense circulation patterns. In
contrast, at a lower Darcy number (Da = 10−5), indicating reduced permeability, the flow
structure shows simpler patterns, characterized by a single primary circulation vortex,
and the thermal distribution shows a higher uniform spacing and smoother transitions.
The influence of porosity variation becomes less pronounced at this lower Darcy number,
indicating that permeability effects play a dominant role over porosity impacts. The
influence of the baffle dimensions (δ) and locations (L) on the flow and thermal patterns
within the porous annular region is reported in Figure 5. Four distinct baffle configurations
are analyzed, characterized by varying different combinations of L and δ dimensions. For
the case of L = 0.2, δ = 0.2, denoting a shorter baffle positioned closer to the bottom, the
flow field exhibits a primary circulation pattern with densely positioned streamlines, while
the isotherms show moderate thermal stratification. However, for δ = 0.2 but increasing
L = 0.2 to 0.8 (shifting the baffle to a higher location), a notable alteration in the flow
structure occurs with a more pronounced distortion in the streamlines adjacent to the baffle
region, accompanied by enhanced thermal mixing, as evidenced by the isothermal patterns.
For configurations with longer baffles (δ = 0.8), the flow and thermal characteristics exhibit
larger significant variations. At L = 0.2, the extended baffle creates a more restricted flow
passage, causing strong flow circulation rates in the restricted region and more pronounced
thermal gradients. The case of L = 0.8, δ = 0.8 shows intense flow modification, with
different flow separation and recirculation zones, along with sharp thermal gradients,
particularly near the baffle edge.
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(a) Da = 10−1 (b) Da = 10−5

Figure 4. Darcy number influence on streamlines and isotherms for L = δ = 0.5, ϵ = 0.4, ϕ = 0.04,
Ra = 106. Continuous and dotted curves, respectively, represent ϵ = 0.4 and ϵ = 0.9 (the arrows in
the upper figures highlight the direction of the vortex rotation in the annulus).

(a) L = 0.2, δ = 0.2 (b) L = 0.2, δ = 0.8 (c) L = 0.8, δ = 0.2 (d) L = 0.8, δ = 0.8
Figure 5. Impact of baffle dimension and location on flow and thermal distributions for ϕ = 0.04,
Ra = 106, ϵ = 0.4, Da = 10−3 (the arrows in the upper figures highlight the direction of the vortex
rotation in the annulus).

4.1.2. Impact of Control Parameters on Thermal Transport Rates

Figure 6 illustrates the thermal efficiency relationship between the average Nu and
the Darcy number for various fin positions (L). The thermal performance predicts a clear
physical trend, indicating at low Darcy numbers (10−5) that the flow drag is severe, and the
heat transfer is primarily conduction-dominated, resulting in low Nu across all fin positions.
As the Da increases, particularly between 10−4 and 10−2, a drastic enhancement in heat
transfer due to stronger convective effects occurs. The fin position closer to the bottom
(L = 0.2) consistently records superior thermal performance, achieving a maximum
Nusselt number. This superiority can be attributed to better utilization of the buoyancy-
driven flow, as the lower fin position allows for more effective development of thermal
boundary layers and convective currents. Conversely, higher fin positions (L = 0.8) show
reduced thermal efficiency, suggesting that placing the fin at higher locations impedes
the BDC flow pattern. The variation in the average Nu curves indicates that further
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increase in permeability beyond Da = 10−2 produces minor variations in heat transfer
enhancement. The interplay between the baffle dimension (δ) and Darcy number (Da) on
heat transfer effectiveness is reported in Figure 7. An overview of the predictions suggests
that shorter fins (δ = 0.2) consistently outperform longer ones, achieving the highest
thermal transfer (Nu). This superior performance of shorter fins could be attributed to
reduced flow blockage, as seen in a longer baffle, permitting better fluid circulation and
hence enhanced convective thermal transport. As the baffle dimension increases to δ = 0.8,
the thermal performance deteriorates due to higher flow resistance, which leads to reduced
convective mixing. The influence of permeability (Da) follows a characteristic pattern. At
low Da (10−5), conduction dominates and heat transfer is minimal across all fin lengths. A
sharp enhancement in thermal transport occurs between Da = 10−4 and 10−2, marking
the transition from conduction- to convection-dominated regimes. Beyond Da = 10−2, the
variation in the curves stabilizes, suggesting that further increases in permeability provide
minimal thermal benefits.

Figure 6. Examination of Nu sensitivity to variations of Da and L for Ra = 106, ϵ = 0.4, ϕ = 0.04,
δ = 0.5.

Figure 7. Thermal efficiency variations with Darcy number and fin dimension at Ra = 106, ϵ = 0.4,
ϕ = 0.04, L = 0.5.

Figure 8 demonstrates the collective impacts of the fin length (δ) and position (L) on the
thermal efficiency for the fixed parameters (Ra = 106, ϵ = 0.4, ϕ = 0.04, Da = 10−2). For
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the combinations of shorter fins (δ = 0.2) and lowered positions (L = 0.2), the heat transfer
performance is predicted to be superior, with Nu around 6.5. However, as the baffle position
increases to L = 0.8, an increase of 38% in the average Nu could be achieved. In addition,
it could be observed that the performance differences between various fin dimensions
become less pronounced, with all curves converging to Nusselt numbers around 8.5–9 for
the elevated baffle location (L = 0.8). The lower fin lengths consistently outperform larger
dimensional baffles across all fin locations, attributed to better utilization of the developing
thermal boundary layer and convective currents near the bottom portion of annular domain.
The effects of the NP volume fraction (ϕ) and fin length (δ) on thermal transport performance
are reported in the bar graph (Figure 9) at Ra = 106, ϵ = 0.4, L = 0.5, and Da = 10−3.
The parametric analysis elucidates that shorter fins (δ = 0.2) consistently demonstrate
superior thermal transport, with Nusselt numbers ranging from 6.29 to 6.82 across all NP
concentrations. A moderate increase in heat transfer is observed with an increasing NP
volume fraction, particularly for δ = 0.2, where Nu increases from 6.29 (ϕ = 0) to 6.82
(ϕ = 0.05). However, this enhancement becomes less pronounced for longer fins (δ = 0.8),
where Nu values remain relatively lower (around 4.2–4.5). To consolidate the outcomes
from these predictions, it may be suggested that the combination of shorter baffles with
high-density NPs could enhance the thermal transport among other combinations.

Figure 8. Thermal efficiency variations with fin dimensions and positions at Ra = 106, ϵ = 0.4,
ϕ = 0.04, Da = 10−2.

Figure 9. Examination of Nu sensitivity to variations in ϕ and δ for Ra = 106, ϵ = 0.4, L = 0.5,
Da = 10−3.
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Figure 10 reports the combined influences of the NP volume fraction (ϕ) and fin
location (L) on the thermal transfer characteristics at Ra = 106, ϵ = 0.4, δ = 0.5, and
Da = 10−3. Fins positioned at L = 0.2 exhibit significantly enhanced heat transfer, with
Nusselt numbers ranging from 7.29 to 7.93 across all NP concentrations. The addition of NPs
shows a modest positive impact on heat transport, with the most pronounced enhancement
observed for L = 0.2, where Nu increases from 7.29 (ϕ = 0) to 7.93 (ϕ = 0.05). However,
fins positioned closer to the upper portion of the annular domain (L = 0.8) demonstrate
consistently lower heat transfer rates (Nu ≈ 2.5–2.64), suggesting that positioning fins too
close to the upper boundary restricts fluid circulation and thermal mixing. The intermediate
fin position (L = 0.5) shows moderate performance, indicating optimal baffle placement
is crucial for maximizing the combined benefits of fin-enhanced heat transfer and NF
properties. The numerical predictions in Figure 11 demonstrate the interplay between
Da and ϕ on thermal efficiency at Ra = 106 and ϵ = 0.4. As expected, higher magnitude
of Da (Da = 10−1) yields substantially enhanced thermal transport rates, with average
Nu ranging from 6.32 to 6.85, indicating augmented fluid permeability and consequently,
higher convective transport. A moderate increment in the heat transport is observed with an
increase in NP concentration across all Darcy numbers. However, for the low permeability
case, (Da = 10−5), the thermal transfer remains notably suppressed (Nu ≈ 0.68–0.77)
despite increasing NP concentration, suggesting that the flow constriction dominates over
the enhanced thermal conductivity impacts of NPs. The intermediate permeability case
(Da = 10−3) shows moderate heat transfer enhancement, highlighting the critical role of
porous media permeability in determining the effectiveness of NP addition.

Figure 10. Examination of Nu sensitivity to variations in ϕ and L for Ra = 106, ϵ = 0.4, δ = 0.5,
Da = 10−3.

Figure 11. Thermal efficiency variations with the combined impacts of Da and ϕ at Ra = 106, ϵ = 0.4,
ϕ = 0.04, L = 0.5.



Mathematics 2025, 13, 2027 18 of 21

4.2. Machine Learning Model
Predictive Models’ Results

Table 4 presents a comparison of the training and testing performance for each model,
considering R-squared (R2), Mean Absolute Error (MAE), and Mean Absolute Percent-
age Error (MAPE). This detailed comparison allows for a thorough assessment of model
generalization and potential overfitting.

Table 4. ML models’ performance.

Model Train R2 Test R2 Diff Train MAE Test MAE Diff Train MAPE Test MAPE Diff

Random Forest 0.9824 0.9152 0.0672 0.1555 0.3587 0.2032 0.0720 0.1956 0.1235
Gradient Boosting 0.9938 0.9849 0.0089 0.1083 0.1913 0.0830 0.0375 0.0454 0.0080
SVR 0.5553 0.6426 −0.0873 0.9670 0.8525 −0.1144 0.8359 0.5213 −0.3146
Ridge 0.3674 0.5048 −0.1374 1.6788 1.3265 −0.3523 0.9652 0.4099 −0.5553
ANN 0.5852 0.3044 0.2808 1.3718 1.6264 0.2546 0.6726 0.6621 −0.0106

Bold numbers indicate the best results.

The Gradient Boosting model shows the best performance, scoring a very high Test R2

of 0.9849, with low Test MAE of 0.1913, and low Test MAPE of 0.0454. The small discrepancy
between the training and testing metrics (R2: 0.0089, MAE: 0.0830, MAPE: 0.0080) indicates
very good generalization capability with no overfitting. The next best performance is the
Random Forest model, which scored a Test R2 of 0.9152, Test MAE of 0.3587, and Test
MAPE of 0.1956. The Random Forest model does show slightly increased overfitting,
in comparison to Gradient Boosting, with an R2 of 0.0672, MAE of 0.2032, and MAPE
of 0.1235. Overall, Random Forest still demonstrates good generalization. The results
emphasize the strength of ensemble learning methods, specifically, Gradient Boosting, in
generalizing complex non-linear relationships while providing good performance. Both
of these ensemble methods improved performance when compared to SVR, Ridge, and
ANN. It can be inferred that tree-based models are likely to be better suited for this area
of application.

The ANN and Ridge Regression models exhibited evidence of overfitting as well.
Although the ANN exhibited a large positive R2 difference (0.2808), and an MAE difference
(0.2546), the Ridge exhibited a negative R2 difference (−0.1374), and a negative MAE
difference (−0.3523). Furthermore, it is observed that there are negative differences in
R2, MAE, and MAPE for SVR and Ridge, indicating that both models performed better
on the test set than on the training set. Overall, their performance is significantly lower
than the ensemble methods described above. The poor performance of the ANN model
demonstrates the complexity of the model and the inferences can be drawn that the structure
of the ANN model network or the training process for the model were not optimal.

5. Conclusions
A comprehensive parametric analysis was conducted to examine BDC in an NF-

saturated porous annular geometry having a circular hot baffle attached to the inner
cylindrical surface. The computational results are supported by machine learning predic-
tions to ensure the credibility of the numerical predictions. Through exhaustive numerical
and machine learning analysis, the following significant findings are reported:

1. Both the baffle dimension and position significantly influence the fluid flow charac-
teristics within the porous cavity, with longer baffles positioned at higher locations
generally leading to more complex flow structures and thermal patterns.

2. The observations from the combined influences of the porosity and permeability of
the porous material reveal a strong interplay between the Darcy number and porosity,
which significantly influences both the flow characteristics and the thermal distribution
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patterns, offering valuable insights for heat transfer applications and system design
considerations.

3. Optimal heat transfer in the porous annular domain could be achieved through a
combination of high permeability and shorter fins that do not cause severe restriction
on the fluid movement.

4. The predictions suggest that shorter fins maintain better fluid circulation and mixing,
while longer fins may create excessive flow resistance that counteracts the potential
benefits of NP addition, even at higher NP concentrations.

5. The simulation predictions suggest that optimal fin placement is crucial for maximiz-
ing the combined benefits of fin-enhanced heat transfer and NF properties.

6. Despite using various models to obtain predictive accuracy, the comparative analysis
showed that the Gradient Boosting model has an outstanding level of predictive
accuracy (Test R2 = 0.9849, Test MAE = 0.1913) and exhibited extensive generalization
ability in comparison with Random Forest, Support Vector Regressor, Ridge, and
Artificial Neural Network models.

7. The minor difference in metrics between the training and testing sets for Gradient
Boosting (R2 Diff = 0.0089) indicates that the model is robust to overfitting.

8. The results from this research strongly support the notion that ensemble tree-based
models, specifically, Gradient Boosting models, are an effective means of accurately
estimating the complex non-linear relationships being evaluated in this research,
especially in comparison to linear, kernel-based approaches and neural networks.

Author Contributions: Conceptualization, methodology, software, and original draft preparation,
S.M.; review and editing, ML model development and plagiarism reduction, A.S.; project administra-
tion review and editing, S.A.A.; preparation of graphs and literature review, P.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the Spanish Government under grants PID2023-150014OB-C21
and PID2023-150029NB-I00.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors S.M. and A.S. acknowledge the support and encouragement from
the University of Technology and Applied Sciences(UTAS)-Ibri, Oman.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature
A aspect ratio
Cp specific heat at constant pressure
D annulus width (m)
Da Darcy number
H annulus height (m)
h baffle location (m)
k thermal conductivity (W/(m K))
K permeability
l length of baffle (m)
Nu average Nusselt number
p liquid pressure (Pa)
Pr Prandtl number
Ra Rayleigh number
t∗ dimensional time (s)
t dimensionless time
T dimensionless temperature
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L dimensionless location
(ri, ro) radius of inner and outer cylinders (m)
(R, Z) non-dimensional radial and axial co-ordinates
(U, V) non-dimensional velocity components in (R, Z) directions
Greek Letters
α thermal diffusivity (m2/s)
β thermal expansion coefficient (1/K)
ε porosity
η dimensionless length of baffle
ω non-dimensional vorticity
θ dimensional temperature (K)
λ radius ratio
Abbrivations
NF nanofluid
NP nanoparticle
TDR thermal dissipation rate
BDC buoyancy-driven convection
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