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The nonlinear dynamics of Taylor-Couette flow in a small-aspect-ratio wide-gap annulus in the counterrotating
regime is investigated by solving the full three-dimensional Navier-Stokes equations. The system is invariant
under arbitrary rotations about the axis, reflection about the annulus midplane, and time translations. A systematic
investigation is presented both in terms of the flow physics elucidated from the numerical simulations and from a
dynamical system perspective provided by equivariant normal form theory. The dynamics are primarily associated
with the behavior of the jet of angular momentum that emerges from the inner cylinder boundary layer at about
the midplane. The sequence of bifurcations as the differential rotation is increased consists of an axisymmetric
Hopf bifurcation breaking the reflection symmetry of the basic state leading to an axisymmetric limit cycle with
a half-period-flip spatiotemporal symmetry. This undergoes a Hopf bifurcation breaking axisymmetry, leading to
quasiperiodic solutions evolving on a 2-torus that is setwise symmetric. These undergo a further Hopf bifurcation,
introducing a third incommensurate frequency leading to a 3-torus that is also setwise symmetric. On the 3-torus,
as the differential rotation is further increased, a saddle-node-invariant-circle bifurcation takes place, destroying
the 3-torus and leaving a pair of symmetrically related 2-tori states on which all symmetries of the system have
been broken.
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I. INTRODUCTION

The transition from two-dimensional to three-dimensional
flows in hydrodynamics is a fundamental step towards
turbulence. There are numerous situations where the two-
dimensional state is time periodic and has symmetries addi-
tional to the invariance in the third direction. One example
is the flow between two concentric differentially rotating
cylinders, Taylor-Couette flow, which has played a central role
in the development of hydrodynamic stability theory [1,2]. Its
geometric simplicity allows for well-controlled experiments.
Theoretical progress originally proceeded by making the
geometric idealizations of an infinite aspect ratio of the annulus
(�, the ratio of cylinder lengths to the annular gap), where the
axial direction is treated as being periodic, and the ratio of
the radii of the two cylinders approaching 1, diminishing the
effects of curvature.

Numerous numerical and experimental investigations have
shown that the effects of physical end walls are not negligible
[3–5] even in very long Taylor-Couette systems (large �)
and have a significant influence on the flow dynamics. The
presence of end walls, even in the limit of being infinitely far
apart, completely destroys the axial translation invariance in
the idealized theory. A direct consequence of destroying the
continuous translation symmetry due to the presence of end
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walls is that instead of a continuous spectrum of axial wave
numbers only a discrete one approximately exists for very
large aspect ratios and for very small aspect ratios the concept
of axial periodicity is lost.

In the classical setup with the inner cylinder rotating and the
outer cylinder stationary, the flow dynamics for small systems
� ≈ 1 is dominated by the competition between several normal
and anomalous modes leading to very rich dynamics [4,6–11].
For very short systems only one or two Taylor cells are present
[12,13].

In the counterrotating cylinders case, there are very few
results in the short-aspect-ratio regime. The early experiments
considered large aspect ratios [14] and often radius ratios close
to 1 [15], primarily in order to accommodate the approx-
imations and idealizations that were being made in the
contemporary theoretical studies [16]. More recently, there
has been much interest in this regime as it supports localized
turbulent patches, referred to as spiral turbulence, which
appear to be a result of shear instability due to the strong
counterrotation [15,17–25]. In contrast, there are virtually
no results in the regime of a very short aspect ratio with
a wide gap. The results of the present study will show
that the flow dynamics in this regime are dominated by the
centrifugal instability of the inner cylinder boundary layer and
the associated jet of angular momentum issuing out of it.

One of the very few studies of short-aspect-ratio wide-gap
counterrotating Taylor-Couette flow is Schulz et al. [13], who
considered aspect ratios in the range � ∈ [0.96,1.28]. They
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conducted both experiments and numerical simulations in
regimes where steady flows with either one or two axisym-
metric cells occur. Their numerical techniques were restricted
to solving the steady axisymmetric Navier-Stokes equations
and they focused on the axisymmetric pitchfork bifurcation
between the (reflection-symmetric) two-cell branch of solu-
tions and the (reflection-symmetry-broken) one-cell branch.
Within this framework, they determined that counterrotation of
the two cylinders promotes breaking the reflection symmetry.
However, their restricted analysis leaves open the question of
other symmetry-breaking and time-dependent instabilities of
the basic state in this often overlooked regime.

In this paper we investigate numerically the dynamics of
Taylor-Couette flow using a time-dependent three-dimensional
Navier-Stokes spectral solver and consider a one-parameter
path of increasing inner cylinder rotation rate while the coun-
terrotating outer cylinder’s rotation rate is held fixed. The cho-
sen parameter path cuts through the heart of the region where
the flow dynamics is dominated by centrifugal instability and is
primarily associated with the behavior of the jet of angular mo-
mentum that emerges from the inner cylinder boundary layer at
about the midplane combined with interactions with secondary
jets. Various symmetry-breaking Hopf bifurcations result in a
sequence of periodic and quasiperiodic solutions. At small
Rei , the steady symmetric basic state loses stability in a super-
critical Hopf bifurcation that breaks the reflection symmetry
and leads to an axisymmetric limit cycle with half-period-
flip symmetry. On further increasing Rei , this limit cycle
loses stability in an axisymmetry-breaking Hopf bifurcation,
introducing a second (incommensurate) frequency associated
with a mean precession in the azimuthal direction, resulting
in a quasiperiodic solution on a 2-torus invariant manifold.
For higher Rei , a further Hopf bifurcation introduces a third
frequency and spawns quasiperiodic solutions on a 3-torus
manifold. Both the 2-torus and 3-torus, as sets, possess the full
symmetry of the system; however, the respective quasiperiodic
solutions do not. Increasing Rei on the 3-torus branch leads to
the third frequency vanishing in a saddle-node-invariant-circle
(SNIC) bifurcation and following this bifurcation 2-torus states
result. These 2-torus states are no longer setwise reflection
symmetric; the SNIC bifurcation here is a setwise symmetry-
breaking bifurcation. The quasiperiodic solutions on these
2-tori have all symmetries of the system broken. Flow features
of these various solutions branches are described in terms of
both their flow physics and equivariant normal form theory.

II. GOVERNING EQUATIONS

Consider the flow driven in the annular gap between
two independently rotating cylinders of length L. The inner
cylinder of radius Ri rotates at angular speed �i and the outer
cylinder of radius Ro rotates at angular speed �o. The end walls
enclosing the annulus are stationary. The fluid in the annulus is
considered to be Newtonian, isothermal, and incompressible
with kinematic viscosity ν. Using the gap Ro − Ri as the length
scale and the radial diffusion time (Ro − Ri)2/ν as the time
scale, the nondimensional Navier-Stokes equations governing
the flow are

∂t u + (u · ∇)u = −∇p + ∇2u, ∇ · u = 0, (1)

where u = (u,v,w) is the velocity in cylindrical coordinates
(r,θ,z) and the corresponding vorticity is ∇ × u = (ξ,η,ζ ).
The system is governed by four parameters: the inner and
outer Reynolds numbers Rei = �iRi(Ro − Ri)/ν and Reo =
�oRo(Ro − Ri)/ν, the aspect ratio � = L/(Ro − Ri), and the
radius ratio Ri/Ro. The boundary conditions are no slip,
with u(ri,θ,z,t) = (0,Rei ,0), u(ro,θ,z,t) = (0,Reo,0), and
u(r,θ,±0.5�,t) = (0,0,0), where the nondimensional inner
and outer radii are ri = Ri/(Ro − Ri) and ro = Ro/(Ro − Ri).

The governing equations and the boundary conditions are
invariant under arbitrary rotations Rα about the axis, reflection
Kz about the annulus midplane z = 0, and time translations
φt0 , generating the symmetry group SO(2) × Z2 × R, where
the first two factors consist of the purely spatial symmetries,
while the third factor corresponds to the temporal symmetries
generating the one-dimensional translation group R. The
actions of the three symmetries on the velocity are

Rα(u,v,w)(r,θ,z,t) = (u,v,w)(r,θ + α,z,t), (2a)

Kz(u,v,w)(r,θ,z,t) = (u,v,−w)(r,θ,−z,t), (2b)

φt0 (u,v,w)(r,θ,z,t) = (u,v,w)(r,θ,z,t + t0). (2c)

A. Numerical methods

The Navier-Stokes equations (1) are solved using a second-
order time-splitting method with consistent boundary condi-
tions for the pressure [26,27]. Spatial discretization is via a
Galerkin-Fourier expansion in θ and Chebyshev collocation in
r and z. The idealized boundary conditions are discontinuous at
the junctions where the stationary end walls meet the rotating
cylinders. In experiments there are small but finite gaps at
these junctions where the azimuthal velocity adjusts to zero.
For accurate use of spectral techniques, a regularization of the
discontinuous idealized boundary conditions is implemented
of the form

v(r,θ,±0.5�,t) = Rei exp([ri − r]/ε)

+ Reo exp([r − ro]/ε), (3)

FIG. 1. (Color online) Contours of (a) rv, (b) η, and (c) ψ of f

at Rei = 0. Red (dark gray) and yellow (light gray) correspond to
positive and negative values, respectively, with zero being white. The
left (right) border is the inner (outer) cylinder. There are 12 positive
and negative contours with rv ∈ [−800,800], η ∈ [−1400,1400], and
ψ ∈ [−2,2].
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FIG. 2. (Color online) Contours of (a) rv, (b) η, and (c) ψ of f

at Rei = 150. The contour levels are the same as in Fig. 1.

where ε is a small parameter that characterizes the physical
gaps (see Ref. [28] for further details on the use of this type of
regularization in spectral codes). In the solutions reported here,
we have used ε = 6 × 10−3. The numerical code has been
previously used to study end wall effects in Taylor-Couette
problems with corotating cylinders in short annuli [29,30]. Up
to nr = 50 and nz = 100 Chebyshev modes in the radial and
axial directions, up to nθ = 32 Fourier modes in the azimuthal
direction, and time steps δt = 0.001 have been used.

III. BASIC STATE

In this study we focus on the strongly counterrotating
regime and as such we shall set Reo = −500 and increase Rei

from 0 to order −Reo. Also, in contrast to most counterrotating
studies, we shall focus on the short-annulus regime with � =
1.6 and the wide-gap regime with Ri/Ro = 0.5. We consider
the situation where the end walls are stationary and this has the
effect of creating a region of nearly zero angular momentum
separating the boundary layers on the two cylinders. Other
conditions on the end walls can be expected to have significant
influences on the dynamics, as had been observed in the
Taylor-Couette flow with a rotating inner cylinder, a stationary
outer cylinder, and one end wall stationary and the other

corotating with the inner cylinder [31,32]. In the present study
we consider only the stationary end wall case.

The steady (fixed point) basic state f is axisymmetric and
reflection symmetric about the midplane, i.e., SO(2) × Z2 × R
equivariant. When the inner cylinder is stationary Rei = 0,
the angular momentum rv diffuses into the interior from
the rotating outer cylinder. For an infinitely long annulus,
there would be no meridional flow; however, the presence
of stationary end walls means that the vortex lines (isolines of
angular momentum for axisymmetric flows) must bend away
from the axial direction to become tangential to the stationary
end walls [33,34]. In doing so, all vortex lines emerge from and
terminate at the small gaps where the rotating outer cylinder
meets the stationary top and bottom end walls. This vortex
line bending into the corners produces corner jet flows that
lead to meridional circulations of opposite senses in the top
and bottom halves of the annular gap. The jet structures are
best seen in the contours of the azimuthal vorticity η and the
corresponding meridional circulations are seen in terms of the
streamlines ψ , where (∂2

z + ∂2
r − 1/r∂r )ψ = −rη. Figure 1

shows contour plots of rv, η, and ψ for this state.
As Rei is increased from zero, an angular momentum

boundary layer forms on the inner cylinder and for sufficiently
small Rei angular momentum diffuses radially into the interior,
except again near the junctions of the stationary top and bottom
end walls with the rotating inner cylinder. As was the case
with the vortex lines near the outer cylinder, the vortex lines
associated with the inner cylinder boundary layer are also
all bent into the top and bottom junction gaps, but here the
vortex line bending leads to meridional flows into the inner
cylinder junctions. This meridional circulation flows in the
inner cylinder boundary layer from the end walls toward the
midplane where the two streams meet and form a jet of angular
momentum that is directed radially outward. This results in a
slight squeezing of the outer cylinder boundary layer flow.
The basic state f at Rei = 150 shown in Fig. 2 can be
compared with f at Rei = 0 in Fig. 1. The jet emanating
from the inner cylinder develops smoothly with increasing
Rei , but strengthens noticeably for Rei beyond about 140.
Apart from viscous diffusion of angular momentum and
the vortex bending mechanism described above, as Rei is

FIG. 3. (Color online) Contours of rv for l at Rei = 300 over one period τ ≈ 0.137 at indicated times. There are 12 positive and negative
contours with rv ∈ [−870,870]; red (dark gray) and yellow (light gray) correspond to positive and negative values, respectively, with zero
being white (see Ref. [35(a)]).
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FIG. 4. (Color online) Space-time plot of η on the inner cylinder
for l at Rei = 300. Red (dark gray) and yellow (light gray) correspond
to positive and negative values, with η ∈ [−1050,1050].

increased, the radial profile of angular momentum near the
inner cylinder is centrifugally unstable and at large enough Rei

this leads to an advection-dominated redistribution of angular
momentum. This is analogous to the situation with natural
convection where there is a smooth transition from conduction
dominated to convection-dominated heat transport rather than
a bifurcation from a conduction state to a convection state as
in classical Rayleigh-Bénard convection.

IV. HOPF BIFURCATION OF THE BASIC STATE

As Rei is increased beyond about 257.6, the basic state
f loses stability via a supercritical symmetry-breaking Hopf
bifurcation H 1. The bifurcating limit cycle l remains ax-
isymmetric, but the midplane reflection symmetry is broken.
However, this broken spatial Kz symmetry is replaced by
a spatiotemporal symmetry S consisting of the midplane
reflection Kz composed with a half-period time evolution.
The physical manifestation of this is evident in the jet that
in the basic state emanates symmetrically at the midplane
now emanating from an axial location that oscillates about the
midplane. When the point of emission is in the upper (lower)
half, the jet is directed downward (upward). Figure 3 shows

five snapshots of the angular momentum rv over one period
τ illustrating the jet dynamics (an animation is available in
Ref. [35(a)]). The figure also illustrates the half-period-flip
symmetry S, whereby Kz(l(t)) = l(t + τ/2). The action of S
on the velocity field is

S(u,v,w)(r,θ,z,t) = (u,v,−w)(r,θ,−z,t + τ/2) (4)

and we can formally write S = Kzφτ/2 [see Eq. (2)]. Acting
on a τ -periodic solution, S2 = I is the identity and so the
complete symmetry group of l is SO(2) × Zst

2 , where the first
factor consists of the purely spatial symmetries, while the
second factor corresponds to the spatiotemporal symmetry
group generated by S.

Figure 4 provides another perspective of the half-period-flip
symmetry of l. It shows a space-time diagram of the azimuthal
vorticity on the inner cylinder wall η(ri,0,z,t). The zero
contour level is in black and indicates where the two streams
in the inner cylinder boundary layer meet near the midplane
to separate into the outward jet. The circular regions of zero η

are indicative of nascent secondary separations.
As global measures of the flow we use the modal kinetic

energies

Em =
∫ 2π

0

∫ �/2

−�/2

∫ ro

ri

umu∗
mr dr dz dθ, (5)

where um is the mth Fourier mode of the velocity field. For
the axisymmetric limit cycle l, only E0 is nonzero. For local
measures we use the azimuthal vorticity on the inner cylinder
at two points symmetrically displaced about the midplane,
η± = η(ri,0,±�/4,t). Figure 5 shows time series of E0 and
η± and the corresponding power spectral densities (PSDs) for
l at Rei = 300. Note that τ is twice the period of the time
series of E0; this is because l is half-period-flip invariant and
so E0(l(t)) = E0(l(t + τ/2)), whereas l is τ periodic, l(t) =
l(t + τ ).

Figure 6 shows the variation with Rei of the peak-to-peak
amplitude of E0, �E0, along with the corresponding period
of oscillation τ . Near the H 1 bifurcation at Rei ≈ 257.6, �E0
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FIG. 5. (Color online) (a) Time series of E0, η+ [red (gray)], and η− (black), and (b) the corresponding power spectral densities (PSD) for
l at Rei = 300.
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FIG. 6. Variation of �E0 and τ with Rei for l.

grows almost linearly and τ decreases weakly with Rei , which
is typical of a supercritical Hopf bifurcation. At about Rei =
300, there is a sudden change in how �E0 and τ vary with
Rei . This change is due to a smooth transition from a single jet
emanating from the inner cylinder to having a second weaker
jet emanating from the inner cylinder. This secondary jet is
evident in Fig. 7, showing the angular momentum of l at Rei =
320; it is qualitatively similar to Fig. 3 corresponding to Rei =
300, except that the secondary jet is very prominent. When
this dynamic is established, by about Rei = 310, the period
of l shows virtually no variation with Rei while the amplitude
continues to rise.

The secondary jets appear alternately near the upper and
lower end walls and merge with the central jet every half
period. Their footprints are evident in the corresponding space-
time plot of η on the inner cylinder shown in Fig. 8. Although
secondary jets are not evident in the angular momentum
contours at Rei = 320 (Fig. 7), their nascent presence is
evident in the η space-time plot (Fig. 4). The emergence of
the secondary jets and the ensuing dynamical complexity can
be interpreted as a competition between different axial length
scales being preferred for the centrifugal instability of the inner

cylinder boundary layer as Rei is increased due to the short
finite axial extent of the annulus.

V. SO(2) SYMMETRY-BREAKING HOPF BIFURCATIONS

A. Normal form of the Hopf bifurcation
for maps with symmetry

Normal form theory provides useful insights on the sym-
metries and dynamical properties of bifurcated solutions, so in
this section we discuss the normal form of a Hopf bifurcation
from a limit cycle l with SO(2) × Zst

2 symmetry group. The
usual way to analyze the stability and bifurcations of periodic
solutions is via a Poincaré map. Figure 9 shows a schematic
of the Poincaré map corresponding to the periodic orbit l (T1).
We select a convenient hyperplane � transversal to l and
starting with x(0) ∈ � as the initial condition, we evolve in
time until the trajectory intersects � again; this is the Poincaré
map P . It is convenient that the Poincaré section � be SO(2)
symmetric: Rα� = �∀α. We can visualize the action of Rα on
the phase of a solution x(t) as a rotation on the � plane around
T̂0, the intersection of l with �. The space-time symmetry
S = Kzφτ/2 is also a map from � to �, as shown in the figure.
Here T̂0 = T1 ∩ � is a fixed point of both P and S, indicating
the half-period-flip symmetry of l.

The Poincaré map P is the square of S and this may impose
some constraints on P = S2. It is better to first determine the
normal form for S and then from that obtain the corresponding
normal form for P [36]. The map S is SO(2) equivariant
and we want to obtain the normal form corresponding to a
bifurcation that breaks the SO(2) symmetry. Let A be the
complex amplitude of the bifurcating eigenvector; the action
of Rα ∈ SO(2) on the eigenvector is of the form

Rα(A,Ā) = (eimαA,e−imαĀ), (6)

where Ā is the complex conjugate of A. Here (A,Ā), or their
modulus and phase A = ρeiϕ , will be used as coordinates
of the center manifold of the bifurcation. The integer m

characterizes the remaining symmetries of the bifurcated
solution: It is invariant under the cyclic group of order m,
termed Zm or Cm in the literature, consisting of discrete
rotations by multiples of 2π/m. In our problem, m = 1.

FIG. 7. (Color online) Contours of rv of l at Rei = 320 over one period τ ≈ 0.119 at indicated times. There are 12 positive and negative
contours with rv ∈ [−891,891]; red (dark gray) and yellow (light gray) correspond to positive and negative values, respectively, with zero
being white (see Ref. [35(b)]).
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FIG. 8. (Color online) Space-time plot of η at the inner cylinder
for l at Rei = 320. Red (dark gray) and yellow (light gray) correspond
to positive and negative values, with η ∈ [−1320,1320].

As the time evolution (the map S) commutes with the
symmetry group, the action of LS , the linearization of the
map S, is of the form LSA = λA. At the bifurcation point
|λ| = 1 and we finally arrive at

LS (A,Ā) = (eiβA,e−iβĀ), (7)

where β, the phase of the S eigenvalue, introduces a
new frequency. The action of LS is exactly the same
as the action of the rotation Rβ/2m. The normal form for S, up
to order k, is of the form

S : A → eiβA + P (A,Ā) + o(|A|k), (8)

where P is a polynomial of order k that satisfies

P (eimαA,e−imαĀ) = eimαP (A,Ā)∀α,
(9)

P (eiβA,e−iβĀ) = eiβP (A,Ā).

As a result, the polynomial in two variables P collapses to a
polynomial Q in one variable P (A,Ā) = AQ(|A|2), as in the
standard Hopf bifurcation. Up to third order in A, the normal
form for S is

S : A → Aeiβ(1 + σ − c|A|2), σ,c ∈ C, (10)

where we have introduced the small parameter σ , which is zero
at the bifurcation point, and c(σ = 0) 	= 0 (the nondegeneracy
condition). It is more convenient to write the normal form in
terms of the modulus and phase of the amplitude A = ρeiϕ and
introduce real parameters σ = μ + iν and c = a + ib. With

f = T0

x(t)

T̂0

Π

KzT̂0

KzΠ

x(0)

x(τ/2)

Px(0)=x(τ)

Sx(0)=Kzx(τ/2)

l = T1

Kz

FIG. 9. (Color online) Schematics of the Poincaré map P and
half-period-flip map S.

this, the normal forms for S and P are

S :

{
ρ → ρ(1 + μ − aρ2)
ϕ → ϕ + β + ν − bρ2,

(11)

P :

{
ρ → ρ(1 + 2μ − 2aρ2)
ϕ → ϕ + 2β + 2ν − 2bρ2.

This is formally a codimension-2 bifurcation with two bifurca-
tion parameters μ and ν. However, the amplitude dynamics is
decoupled from the phase dynamics. Looking at the amplitude
dynamics, it is a codimension-1 bifurcation with the same
normal form as the Neimark-Sacker bifurcation. Assuming
a > 0 (the supercritical case), we have a fixed point ρ = 0
that is stable for μ < 0, loses stability at μ = 0, and spawns a
stable invariant circle ρ0 = √

μ/a for μ > 0; the appearance
of the invariant circle is a codimension-1 phenomenon. The dy-
namics on the invariant circle is very simple: a rotation of angle
ϕ0 = β + δ every iteration of the half-period-flip map S and
of 2ϕ0 for the Poincaré map P . We have introduced the small
drift δ = ν − bρ2

0 = ν − bμ/a, which is zero at the bifurcation
point μ = ν = 0. The dynamics on the invariant circle is either
periodic or quasiperiodic, depending on whether ϕ0/π is ratio-
nal or irrational. Therefore, the details of the phase dynamics
depend on the value of the second parameter ν and are therefore
codimension-2 phenomena. This is a well-known result in
dynamical system theory, described in detail in many texbooks
[37,38]. The action of the symmetries on a bifurcated solution
belonging to the invariant circle A0(ϕ) = √

μ/a eiϕ is given by

Rα : ϕ → ϕ + mα, S : ϕ → ϕ + β + δ = ϕ + ϕ0. (12)

From these equations we can draw some important conclu-
sions. The actions of Rα on the phase of the bifurcated solutions
(ϕ → ϕ + mα) and on the physical angle θ in cylindrical coor-
dinates [Eq. (2b)] (θ → θ + α) are proportional. Moreover, the
invariant circle is an SO(2) orbit: Starting with a point on the
invariant circle and applying SO(2) to it, we obtain the whole
invariant circle. Finally, the action of S (or P) is the same as
the action of a rotation of angle α = ϕ0/m (α = 2ϕ0/m). On
the bifurcated solutions, the action ofS is the same as the action
of a rotation: S = Rϕ0/m. Applying the Poincaré map (i.e.,
advancing in time one period) is also equivalent to a rotation
of 2ϕ0/m of the phase solution P = R2ϕ0/m or a physical
rotation of 2ϕ0 of the velocity field. Figure 10 illustrate these
results. The invariant circle is T̂ s

1 and the dynamics of S and
P is illustrated in Fig. 10(b): γ s

1 = {x,Px,P2x, . . .} and γ̄ s
1 =

{x,Sx,S2x, . . .} are the discrete orbits generated by P and S,
respectively. The small drift angle is also shown for the case
β = π , which corresponds to the case in our fluid problem.

From the dynamics on the Poincaré section � we can
recover the dynamics in the whole phase space. Starting from
x ∈ T̂ s

1 we can compute by time evolution the bifurcated
quasiperiodic solution qs

2; the subindex 2 indicates that it is
a quasiperiodic solution with two frequencies, one very close
to the frequency of l, ω = 2π/τ , and the other related to the
dynamics on the invariant circle T̂ s

1 , ω2 = ωϕ0/π . The set of
all quasiperiodic solutions constitutes the 2-torus T s

2 ; the curve
qs

2 densely fills T s
2 , except when ϕ0/π is rational, and the two

frequencies ω and ω2 are in a rational ratio. The intersection of
qs

2 with � is the discrete orbit γ s
1 . We have seen thatS = Rϕ0/m

on the bifurcating solution qs
2. Therefore, qs

2 is invariant under
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FIG. 10. (Color online) Schematics of the quasiperiodic solution qs
2 starting at x and the discrete orbits made of the iterates of P and S

acting on x.

a new spatiotemporal symmetry S̃ = R−ϕ0/mS; the superindex
s on qs

2 indicates the presence of this spatiotemporal symmetry.
The square of S̃, S̃2 = R−2ϕ0/m, is a purely spatial symmetry
that generates a cyclic subgroup of SO(2), which is finite or
numerable depending on whether ϕ0/π is rational or irrational.
Hence the spatial symmetry group GS of the bifurcating
solution is generated by the rotation R2ϕ0/m resulting from
the breaking of S and the rotations R2π/m resulting from the
breaking of SO(2). The complete symmetry group of the bi-
furcating solution is obtained by adjoining S̃ to GS , the
details depending on the relationship between β and m.
The symmetries of an individual solution qs

2 can be quite
complicated. However, the symmetries of the set T s

2 are
much simpler. The invariant circle T̂ s

1 does not change under
arbitrary rotations. Also, the action of S changes only the
phase ϕ of the solution but not its modulus. Applying either
a rotation Rα or S transforms one qs

2 solution to a different qs
2

solution, but both are in the same 2-torus T s
2 . Moreover, T s

2
is invariant under time evolution φt (by definition, because it
consists of all the qs

2 solutions). Since Kz = Sφτ/2, the 2-torus
T s

2 is also Kz symmetric. The complete symmetry group of
T s

2 , as a set, is SO(2) × Z2 × R, the symmetry group of the
governing equations. The bifurcated solutions l and qs

2 lose
symmetries at each bifurcation, but the associated invariant
sets T1 and T s

2 have the same symmetries as the governing
equations. These two different kinds of symmetry are called
pointwise and setwise symmetries [39,40].

Two particular cases β = 0 and π result in an eigenvalue
1 for the Poincaré map P . In the absence of symmetries, this
would result in a saddle node of maps, i.e.. a saddle node of
periodic orbits of the underlying partial differential equation
problem. The symmetries alter this scenario. For the case β =
0, the invariant circle consists of a continuous family of fixed
points along the straight line ν = bμ/a in parameter space for
both S and P . Instead of a saddle node we have a pitchfork-
of-revolution bifurcation, with the circle of fixed points being
the orbit on any of the fixed points under the action of SO(2).
Away from the line ν = bμ/a, instead of fixed points the
dynamics result in a small drift δ along the orbit. This is the
origin of the second frequency, which is always present even
in the case with β = 0. This also occurs in other problems
with similar symmetries [see, for example, Ref. [41] for the
O(2) symmetry]. In the β = 0 case S̃ = S and the half-period-
flip symmetry is preserved along the line ν = bμ/a and it is
preserved except for the small drift for other parameter values.

The β = π case is different. It also has a pitchfork-of-
revolution bifurcation along the straight line ν = bμ/a and
the corresponding drift dynamics for other parameter values.
However, in this case, the S symmetry S : ϕ → ϕ + π + δ is
broken. Along the line ν = bμ/a the eigenvector changes sign
every half period and the bifurcating solution is invariant to
S̃ = R−π/mS = R−π/mKzφτ/2; away from the line ν = bμ/a

we have the same invariance plus a small drift. The new
spatiotemporal symmetry S̃ consists of advancing half a period
in time and applying a spatial symmetry consisting of a rotation
of angle −π/m followed by the reflection Kz. This spatial
symmetry is called an improper rotation (or rotoreflection,
or rotary reflection) of angle −π/m. The improper rotation
generates what is called in crystallography the S2m Spiegel
group; this group is illustrated in Fig. 11 for the m = 6 case.
The spatiotemporal group generated by S̃ is isomorphic with
S2m, but the odd powers of S̃ include a half-period advance
in time, while the even powers of S̃ are purely spatial and
coincide with the Zm group generated by the rotation R2π/m.
A particularly simple case is m = 1, which is the case in
our problem. In this case S̃ = RπS = RπKzφτ/2 = Iφτ/2,
where I is the central inversion symmetry. Since I2 = I is
the identity, the symmetry group of the bifurcated solution is
Z̃st

2 generated by S̃ along the line ν = bμ/a. Away from this
line the symmetry group is 〈S̃〉, the cyclic group generated

2π/m

FIG. 11. Symmetries of the antiprism with m sides form the
Spiegel group S2m; the m = 6 case is shown. The symmetry group is
generated by a rotation of π/m around the vertical axis followed by a
midplane reflection. The top and bottom hexagons have been oriented
with arrows in order to avoid reflection symmetries on vertical planes
through the axis.
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FIG. 12. (Color online) Isosurfaces of rv at times t as indicated over one period (τ ≈ 0.118) of qs
2 at Rei = 365; the top row is of the full

solution (isolevel shown at rv = 100) and the bottom row is of the m = 1 contributions (isolevel shown at rv = ±10) (see Ref. [35(c)]).

by S̃, which can be finite (isomorphic to Zq for some
integer q) or numerable (and then isomorphic to the additive
group of integers Z), depending on δ/π being rational or
irrational.

The phase dynamics depends critically on the symmetry
group. If the system were O(2) equivariant instead of SO(2)
equivariant, then ν = b = 0 and the phase dynamics would
be trivial. However, in the O(2) equivariant case the center
manifold is four dimensional and there is the possibility of
rotating waves in both directions ±θ as well as standing waves.
With SO(2) symmetry the picture is simpler: There are only
rotating waves in a given direction (specified by the sign of β),
but the precession angle θ0 is not constant; it varies linearly
with the bifurcation parameters μ and ν. This linear variation in
precession angle is what we call a slow drift of the bifurcated
solution along the invariant circle. Even in the special case
β = 0, a new frequency appears due to the drift; however, in
this case it is possible to fine-tune the bifurcation parameters in

FIG. 13. (Color online) Contours of rv at indicated times over one
period (τ ≈ 0.118) for m = 1 contributions of qs

2 at Rei = 365; the
top row is at z = �/4 and the bottom row is at z = −�/4. There are 12
positive and negative contours with rv ∈ [−20,20] (see Ref. [35(d)]
for z = �/4).

order to suppress the drift along the line ν = bμ/a in parameter
space. By fitting a straight line to the precession frequency as
a function of the bifurcation parameter μ, it is possible to
determine both β and the ratio b/a.

B. Two-torus state qs
2

Increasing Rei , the axisymmetric limit cycle l loses stability
in an SO(2) symmetry-breaking Hopf bifurcation H 2 at Rei ≈
356.3. The bifurcating solution qs

2 is a quasiperiodic state with
azimuthal wave number m = 1. It has one frequency τ that
corresponds to that of the underlying l from which it bifurcated
and an additional frequency due to the Hopf bifurcation that
corresponds to a counterclockwise (viewed from the top) mean
precession of the m = 1 spatial structure. This is precisely
the situation that the normal form theory presented in the
preceding section indicates. Due to this mean precession, qs

2
is not half-period-flip invariant, but it is still invariant to a new
spatiotemporal symmetry (denoted S̃ in the preceding section)
whose action consists of that of the half-period-flip symmetry
composed with an additional rotation about the axis by a small
drift angle δ.

Figure 12 shows isosurfaces of rv for the full solution
(top row) and the m = 1 contribution (bottom row) of qs

2 at
Rei = 365 at five times over one period of the underlying
axisymmetric oscillation associated with the central jet (τ =

356 357 358 359 360 361
Rei

0

0.01

0.02

0.03

0.04

0.05

δ

FIG. 14. (Color online) Variation of the drift angle δ for qs
2 with

Rei . The red line is a linear fit and the vertical dotted line is the critical
Rei for H 2. The extrapolated value of δ at H 2 is 0.000 738.
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⎯E1

FIG. 15. (Color online) Variation with Rei of Ē0 and Ē1 in the
neighborhood of the Hopf bifurcation from l to qs

2 . The unstable l

branch was found by restricting the computations to the axisymmetric
subspace.

0.118). The flow is still dominated by the central jet oscillations
about the midplane. As Rei = 365 is close to the critical value
for H 2, the full qs

2 solution looks similar to l. However, plotting
only the nonaxisymmetric components of rv reveals the m = 1
contributions, which provide a very good approximation to
the Hopf eigenfunction of rv. From Ref. [35(c)] it is apparent
that the m = 1 contributions correspond to a tilting of the
secondary jets found in l. These appeared alternately above
and below the midplane as the central jet oscillated up and
down. In the qs

2 solutions these alternately appearing jets have
an alternating sign of helix angle and sense of precession, but
these are not perfectly symmetric due to the bias imposed by
the rotation of the inner cylinder and so there is a net drift in
azimuth, in accord with the normal form analysis of Sec. V A.
By strobing the m = 1 movie using a period of τ , this drift
becomes apparent as the strobed structure remains invariant
except for a rotation given by the drift. Comparing the first
and last frames of the second row of Fig. 12, one can see this

small drift, but it is much more clearly seen in Ref. [35(d)],
which shows a strobed animation of the qs

2 over several periods.
The strobed movie allows for a straightforward determination
of the drift angle. Note that while the spiral structures rotate
preferentially in the counterclockwise direction in continuous
time, the drift is in the clockwise direction.

In order to determine the value of β (the critical eigenvalue
of the S map) we must explore what happens with the
half-period-flip map S. Comparing Figs. 12(a) and 12(c), we
see that the eigenfunction (i.e., the second row in the figure)
changes sign upon applying the half-period flip S, apart from
a very small drift. Therefore, we have the β = π case. By
plotting horizontal sections for two Kz-symmetric planes, at
z = ±�/4 as illustrated in Fig. 13, we can precisely measure
the drift angle δ. According to the normal form theory, the
variation of δ with Rei should be linear close to the bifurcation
point. The variation of δ with Rei for qs

2 is shown in Fig. 14;
indeed δ varies linearly as predicted and it is very close to
zero as Rei approaches the bifurcation point H 2. This means
that by slightly changing another parameter, such as the aspect
ratio � or the rotation of the outer cylinder Reo (which would
play the role of ν in the normal form theory), we can stop and
even change the sign of the drift angle. Identifying the normal
form parameter μ with Rei − Recrit

i , the slope in Fig. 14 gives
the value of b/a ≈ 0.0109.

Since qs
2 is quasiperiodic, �E0 is no longer a suitable global

measure of the flow. Instead, we use as global measures the
time-averaged kinetic modal energies Ē0 and Ē1 taken over
a very long time (long enough so that the average does not
change very much, typically several diffusion times). The
bifurcation from l, spawning qs

2, is shown in Fig. 15 in terms
of both Ē0 and Ē1, showing that it is a supercritical Hopf
breaking SO(2) symmetry, with Ē1 growing almost linearly
from zero at the bifurcation and Ē0(qs

2) deviating only slightly
from that for the unstable l (which was found by restricting
the computations to the axisymmetric subspace). The growth
in Ē1 with increasing Rei is compensated for by a decrease in
Ē0.

Figure 16 shows a phase portrait of qs
2 on (η−,−η+) at Rei =

365 and the corresponding two-dimensional Poincaré section

−600 0 600 1200
−η+

−600

0

600

1200

η−

q
2
s

l

480 490 500 510 520
η−

86000

87000

88000

89000

E0 γ1
s

γ0

(a () b)

FIG. 16. (Color online) (a) Phase portraits of l (T1) at Rei = 340 and qs
2 (T s

2 ) at Rei = 365 on (η−,−η+) and (b) the corresponding
two-dimensional Poincaré sections (E0,η−) with η+ = −200; γ0 = l ∩ � and γ s

1 = qs
2 ∩ �.
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FIG. 17. Power spectral density of E0 and η+ for qs
2 at Rei = 365.

for η+ on (E0,η−). The Poincaré section used corresponds to
η+ = −200. For comparison, the red (gray) curve in the phase
portrait corresponds to l at Rei = 340 whose corresponding
Poincaré section is a single point. From the phase portrait it
is clear that T s

2 , the 2-torus on which qs
2 resides, is setwise

symmetric.
Figure 17 shows the PSD of E0 and η+ for a qps

2 close
to the Hopf bifurcation H 2. The PSD of E0 spectra for qs

2 is
qualitatively the same as that for l (Fig. 5), consisting of ω and
its harmonics, whereas the η+ spectra for qps

2 has an additional
incommensurate frequency plus all the linear combinations.
This new frequency is due to the Hopf bifurcation; it is
very nearly 1/3 of the primary frequency of η+ (ω), the
incommensurate nature being associated with the small drift
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FIG. 18. (Color online) Space-time plot of η for qs
2 at (a) the

inner cylinder and (b) the midgap at Rei = 365. Red (dark gray) and
yellow (light gray) correspond to positive and negative values, with
(a) η ∈ [−1480,1480] and (b) η ∈ [−750,750].

δ. None of this appears in the E0 spectra as it is associated
with nonaxisymmetric dynamics, which simply correspond to
precession and as such do not affect the global kinetic energy
of the solution.

The additional frequency in qs
2 destroys the half-period-flip

symmetry. This, however, is not readily appreciated in the
space-time plot of η on the inner cylinder, shown in Fig. 18(a)
for qs

2 at Rei = 365; it is very similar to that of l (Fig. 4), which
is half-period-flip symmetric. In contrast, the space-time plot
of η at midgap, r = (ri + ro)/2, shown in Fig. 18(b), does
show the broken half-period-flip symmetry of qs

2, indicating
that the symmetry breaking is dominated by the dynamics of
the jets in the bulk interior flow.

VI. THREE-TORUS STATE T3 AND ITS BREAKUP

Further increasing Rei , qs
2 becomes unstable at Rei ≈

375.6, where a further frequency ω3 appears and a new
quasiperiodic solution q3 with three frequencies is found; this
solution exists in a 3-torus invariant manifold T3. Three-torus
states are not commonly found in hydrodynamics. Often they
are found in periodically forced systems [42–45], but have
also been found in unforced flows [11,46–48], as is the case
in the present problem. This is in line with the theoretical
expectation of their occurrence in typical nonlinear dynamical
systems [49].

Figure 19 shows the variations in Ē0 and Ē1 over a range
of Rei that includes the Hopf bifurcation H 2 from l to qs

2,
described in the preceding section, and the Hopf bifurcation
H 3 from qs

2 to q3. Near this bifurcation the mean modal
energies of q3 vary with Rei in a qualitatively similar fashion as
they do for qs

2, but for Rei � 380, Ē1 grows much more rapidly
and as a consequence Ē0 decreases with increasing Rei .

By Rei = 400, the flow dynamics of q3 are significantly
different from those of qs

2. Figure 20 shows isosurfaces of rv

for the full solution and its m = 1 contributions (bottom row)
of q3 at five times over a period τ = 0.196 at Rei = 400. While
the flow dynamics continues to be dominated by the central
jet oscillating up and down, much like with l and qs

2, for q3 the
central jet has developed a significant m = 1 wobble, which is
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FIG. 19. (Color online) Variation with Rei of Ē0 and Ē1 in the
neighborhoods of the Hopf bifurcation from qs

2 to qs
3 and the SNIC

bifurcation.
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FIG. 20. (Color online) Isosurfaces of rv of the full solution (top row, rv = 300) and of the m = 1 contribution (bottom row, rv = ±45)
at five different times t as indicated over a time period τ = 0.196 for T3 at Rei = 400 (see Ref. [35(f)]).

clearly visible in the isosurface plots of the full solution. It is
this wobble of the main central jet that contributes to the rapid
growth in Ē1 with Rei . The emergence of the central jet and of
the secondary jets from the inner cylinder boundary layer for
q3 is very similar to that for qs

2, as can be seen by comparing
the space-time plot of η on the inner cylinder shown in
Fig. 21(a) for q3 at Rei = 400 with that for qs

2 at Rei = 365 in
Fig. 18. While the space-time plot of η on the inner cylinder
suggests a half-period-flip symmetry, a space-time plot of η at
midgap [Fig. 21(b)] clearly indicates that q3 has much more
complicated dynamics. All the enhanced m = 1 wobbling
associated with q3 occurs in the interior, as suggested by the
m = 1 isosurfaces in the second row of Fig. 20.
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FIG. 21. (Color online) Space-time plot of η for q3 at (a) the
inner cylinder and (b) the midgap at Rei = 400. Red (dark gray) and
yellow (light gray) correspond to positive and negative values, with
(a) η ∈ [−1650,1650] and (b) η ∈ [−860,860].

Figure 22 shows the PSD of E0, η+, and η of q3 at
Rei = 400. The PSD of E0 does not contain the ω2 frequency
[which results from the azimuthal drift from having broken
SO(2) symmetry] and so it consists only of ω and the new
frequency ω3, which emerges at the Hopf bifurcation H3, and
their linear combinations. In contrast, the PSD of η+ consists
of linear combinations of all three frequencies. At Rei = 400
it is apparent that ω3 is small compared to ω.

The bifurcation from qs
2 to q3 can also be described

by looking at the Poincaré section �. Figure 23(a) shows
a schematic of the invariant 2-torus T̂ s

2 that bifurcates in
a secondary Neimark-Sacker bifurcation from the invariant
circle T̂ s

1 . The schematic is on the Poincaré section � (which
is infinite dimensional) and can be compared with Fig. 10(b).
By time evolution, starting from T̂ s

2 we obtain the 3-torus
T3. The solution of the Navier-Stokes equations starting from
x generates a q3 curve that generically fills T3 densely.
The intersection of q3 with � results in the discrete orbit
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FIG. 22. Power spectral density of E0, η+, and η for T3 at Rei =
400.
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FIG. 23. (a) Schematic of the bifurcation from qs
2 to q3 viewed on the Poincaré section �; the invariant circle T̂ s

1 spawns T̂ s
2 . (b) Poincaré

section (E0,η−) with η+ = −200 of q3 at Rei = 400.

generated by the Poincaré map P acting on x: γ s
2 = qs

2 ∩ � =
{x,Px,P2x, . . .} ⊂ T̂ s

2 . The discrete orbit γ̄ s
2 generated by

the half-period-flip map S is γ̄ s
2 = {x,Sx,S2x, . . .}, which

contains γ s
2 because S2 = P: γ s

2 ⊂ γ̄ s
2 . Generically, both γ s

2

and γ̄ s
2 densely fill the invariant torus T̂ s

2 . The angle χ is
related to the third frequency of the quasiperiodic solution q3

in the usual way: ω3 = ωχ/π . Figure 23(b) shows a Poincaré
section of q3 at Rei = 400, using the same section as used for
T s

2 earlier. As expected, it is clearly not a closed loop.
The characteristics of q3 change rapidly with Rei for

Rei > 400. For Rei ∈ (400,403), Fig. 19 shows that Ē1 grows
much more rapidly and Ē0 decreases very rapidly with Rei ,
corresponding to very large amplitude wobbles of the jets. At
about about Rei = 402.8, the 3-torus ceases to exist as the
frequency associated with the wobbles, ω3, goes to zero and
the associated period becomes unbounded. Figure 24 shows a
time series of E0 for q3 at various Rei . For Rei � 400 it has a
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FIG. 24. Time series of E0 for T3 at Rei as indicated.

relaxation type of character typical of slow-fast dynamics and
the long period associated with 1/ω3, which we will now refer
to as τSNIC, is clearly evident.

The variation with Rei of τSNIC for q3 is shown in Fig. 25. As
Rei → Rei,c ≈ 402.783 from below, τSNIC → ∞ following
the 1/

√
Rei,c − Rei scaling associated with the saddle-node-

infinite-period (SNIC) bifurcation [38]. Open circles are the
computed periods and the line gives a fit of the form τSNIC =
a0 + a1/

√
Rei,c − Rei .

In a classical SNIC, a saddle-node bifurcation takes place
on an invariant cycle. Before the bifurcation the invariant cycle
is a periodic solution and its period becomes unbounded as the
bifurcation point is approached, following an inverse square-
root law. At the bifurcation, a saddle and a node are created and
are connected via two heteroclinic curves forming the invariant
circle that ceases to exist after the bifurcation. Here the SNIC
bifurcation takes place on a 3-torus state T3; the saddle and
node are 2-torus states. Unlike T s

2 , which is Kz symmetric, the
new 2-tori are not and so there is a pair of conjugate 2-tori,
which we shall refer to as T a

2 and its conjugate as T ∗a
2 (obtained

by applying the Kz reflection to T a
2 ).

390 395 400 405
Rei

0

5

10

τSNIC

FIG. 25. Variation of τSNIC with Rei for T3. The solid circles
are the computed periods and the line is a fit of the form τSNIC =
a0 + a1/

√
Rei,c − Rei .
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FIG. 26. (Color online) Schematics of the double SNIC bifurca-
tion. (a) and (b) are at the SNIC bifurcation point, where the saddle
nodes T̂ a

1 and T̂ a∗
1 have just appeared. (c) is the situation after the SNIC

bifurcation: The saddles (◦) and nodes (•) separate. The unstable
saddles T̂ a

1,u and T̂ a∗
1,u cannot be observed.

Figure 26 shows a schematic of the double SNIC bifurcation
on the invariant 2-torus T̂ s

2 , where a couple of Kz-asymmetric
invariant circles T̂ a

1 and T̂ a∗
1 bifurcate from the Kz-symmetric

2-torus T̂ s
2 . The asymmetric invariant circles are symmetrically

related: T̂ a∗
1 = KzT̂

a
1 . The schematic is on the Poincaré

section �. Here �′ is a second Poincaré section made on
�, showing the relationships between T̂ s

2 , T̂ a∗
1 , T̂ a

1 , and T̂ s
1 .

The second Poincaré section �′ can be physically realized
in a precessing system where the precession frequency of
the different solutions disappears, so all the tori lose one
dimension: � becomes the whole phase space and �′ becomes
an ordinary Poincaré section.

Figure 27 shows a phase portrait on (η−,−η+) and a
corresponding two-dimensional Poincaré section for η+ on
(E0,η−) of the 2-torus solution qa

2 at Rei = 410. Compared
to the phase portrait for qs

2 at lower Rei in Fig. 16, it is
more complicated, but still a 2-torus state as evidenced by
the closed loop structure of the Poincaré section. The phase
portrait [Fig. 27(a)] indicates that T a

2 is not symmetric. We
have taken the qa

2 solution, reflected it, and used it as an initial
condition for a time evolution and have obtained qa∗

2 , whose
phase portrait is the mirror image of Fig. 27(a) reflected about
the line η− = −η+.

Figure 28 shows the corresponding power spectral density
of E0 and η+ for qa

2 at Rei = 410, following the SNIC; these
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FIG. 28. Power spectral density of E0 and η+ for qa
2 at Rei = 410.

are similar to the PSD for the qs
2 at lower Rei (Fig. 17). Again,

the PSD of E0 shows only the single frequency ω and its
harmonics and the PSD of η+ consists of linear combinations
of ω and ω2.

The flow dynamics of qa
2 are similar to those of q3. Figure 29

shows rv isosurfaces of qa
2 for the full solution (top row)

and its m = 1 contributions (bottom row) at five times over a
period τ = 0.188 at Rei = 410. As for q3, the flow dynamics
is dominated by the central jet oscillating up and down
interacting with the m = 1 secondary jets. The m = 1 wobble
of the central jet is clearly visible in the isosurface plots of the
full solution whereas, compared to Fig. 20, the secondary jets
are less pronounced. However, the m = 1 isosurfaces clearly
illustrate the wobbling in the interior. The emergence of both
central and secondary jets from the inner cylinder boundary
layer remains very similar to that for q3, as can been seen
from space-time plot of η on the inner cylinder, whereas the
space-time plot of η at midgap shows the complicated wobbles
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2000
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200 400 600 800 1000 1200
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FIG. 27. (a) Phase portrait of qa
2 at Rei = 410 on (η−,−η+) and (b) the corresponding two-dimensional Poincaré section (E0,η−) with

η+ = −200.
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FIG. 29. (Color online) Isosurfaces of rv of the full solution (top row, rv = 300) and of the m = 1 contribution (bottom row, rv = ±30)
at five different times t as indicated over a time period τ = 0.188 for T a

2 at Rei = 410.

in the interior (see Fig. 30 for qa
2 at Rei = 410 and Fig. 21 for

q3 at Rei = 400).

VII. DISCUSSION AND CONCLUSION

The numerical simulations of the small-aspect-ratio wide-
gap counterrotating Taylor-Couette system have revealed a
sequence of symmetry-breaking Hopf bifurcations as the inner
cylinder rotation is increased. The dynamics are dominated
by the centrifugal instability of the angular momentum
distribution in the inner cylinder boundary layer. This holds
even for the first instability, which is usually considered to
be shear driven in classical treatments of the counterrotating
system with large (or infinite) aspect ratio. The small aspect
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1

0
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FIG. 30. (Color online) Space-time plot of η for qa
2 at midgap

over one diffusion time at Rei = 410. Red (dark gray) and yellow
(light gray) correspond to positive and negative values, with (a) η ∈
[−1720,1720] and (b) η ∈ [−950,950].

ratio and the corresponding end wall effect change the classical
scenario: For slow inner cylinder rotations, a reflection
symmetric jet of angular momentum emerges from the inner
cylinder boundary layer at midplane. The flow is steady,
axisymmetric, and reflection symmetric about the midplane.
This basic state undergoes an axisymmetric Hopf bifurcation
to a periodic state l in which additional small jets erupt
from the inner cylinder boundary layer and the primary jet
no longer emerges from the midplane but oscillates about
it, resulting in a flow that is half-period-flip symmetric. For
higher inner cylinder rotations, l becomes unstable, spawning
a two-frequency state qs

2. One of the frequencies ω corresponds
to the frequency of the underlying l from which it bifurcated
and the new frequency corresponds to a mean precession of
the m = 1 component and is seen as a wobble of the jets.
The 2-torus T s

2 on which the flows qs
2 reside retains all the

spatial symmetries of the system, but the mean precession
destroys the half-period-flip invariance of qs

2. However, qs
2

remains invariant to a spatial-temporal symmetry whose action
consists of that of the half-period-flip symmetry composed
with an additional rotation about the axis by a small drift
angle. Faster inner cylinder rotations increase the amplitudes
of the wobbles and another Hopf bifurcation introduces a third
incommensurate frequency and flows on a 3-torus T s

3 . The
3-torus is destroyed with increasing inner cylinder rotation as
the third frequency vanishes at a SNIC bifurcation where the
reflection symmetry is broken. Following this, quasiperiodic
solutions evolve on one or other symmetrically related 2-tori
T a

2 and T a∗
2 = KzT

a
2 .

In unraveling this sequence of symmetry-breaking bifurca-
tions and characterizing the solutions and the spaces in which
they exist, we have had to make use of a combination of tools:
first, an accurate Navier-Stokes solver, but then having the
solutions they needed to be characterized in order to relate
them to the corresponding equivariant normal form theory. In
problems with symmetries and in particular spatiotemporal
symmetries, we have found it necessary to utilize both local
and global measures of the flow state. Our study shows that the
characteristics of the flow at different locations are very differ-
ent: the flow appears almost axisymmetric at the inner cylinder
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FIG. 31. (a) Schematic bifurcation diagram, using Rei as the bifurcation parameter. Here H 1 is a Hopf bifurcation of the basic state f

spawning the limit cycle l. At the Hopf bifurcation H 2, a quasiperiodic symmetric state qs
2 emerges out of the limit cycle l and subsequently

undergoes another Hopf bifurcation H 3 spawning a quasiperiodic q3. In q3, a SNIC bifurcation takes place, leading to asymmetric solutions
qa

2 and q
a,∗
2 . Stable (unstable) solution branches are shown as solid (dashed) curves. (b) Pointwise and setwise symmetry groups of the stable

solutions found and the corresponding invariant tori where they exist. The components R, Zst
2 , and 〈S̃〉 are generated by symmetries involving

time; the other components consist of purely spatial symmetries.

and the succession of bifurcations do not modify it. However,
at the cylinder midgap all the bifurcations and symmetry break-
ings are clearly identified, as we have seen from the time series
at both locations (Figs. 8, 18, 21, and 30). Something similar
happens when looking at local and global measurements, such
as time series at a given point (a local measure) and the kinetic
energy of the Fourier modes (global measures), which reflect
different flow properties. The fast Fourier transform of the
modal energies and of the time series we have analyzed display
different properties of the flow. Both kinds of measurements
(different physical locations, local or global) are important
and complementary, and focusing on just one of them can be
misleading. Therefore, experiments and numerical simulations
of complicated flows must be carefully conducted, examining
all of these characteristics and then rationalizing the results in
terms of equivariant normal form theory.

A schematic of the bifurcation sequences discussed above,
with increasing Rei , is shown in Fig. 31(a). Figure 31(b) lists
the pointwise symmetry groups of all the solutions obtained
and also the setwise symmetry groups of the associated invari-
ant tori where these solutions exist. The pointwise symmetry
groups of the solutions are reduced at each bifurcation as some
of the symmetries are broken until finally q3 and qa

2 do not
have any remaining symmetry. Their symmetry group is {I }
consisting of a single element, the identity transformation. The
associated invariant tori, however, retain all the symmetries
of the governing equations, i.e., they are invariant as a set
when the symmetries are applied, except for T a

2 , which loses
the reflection symmetry Kz. The invariant tori Tn, where n

is the dimension of the torus, contain a continuous family
of different solutions, except for the lower-dimensional ones,
which contain a single solution: T0 = f and T1 = l. The
symmetry breaking at each bifurcation is summarized as
follows. At H 1 the base state f , which is invariant under
the full symmetry group of the problem, SO(2) × Z2 × R,
loses stability and a limit cycle l is spawned, breaking the
Kz symmetry and the time invariance φt of the steady state
f . The limit cycle, however, is invariant to a combination of
the two broken symmetries, consisting of Kz composed with
a half-period time translation. This half-period-flip symmetry

S and the rotational symmetries Rα are then broken in the
Hopf bifurcation of maps H 2 and only their combination S̃, a
new spatiotemporal symmetry of the bifurcated quasiperiodic
solution qs

2, remains. Then all pointwise symmetries are broken
in a secondary Hopf bifurcation of maps H 3, spawning a
three-frequency quasiperiodic solution qs

3. Considered as sets,
all the invariant tori created at the three successive Hopf
bifurcations preserve the full symmetry group of the problem
SO(2) × Z2 × R. Finally, in the SNIC bifurcation, the setwise
reflection symmetry Kz is broken. The Kz-symmetric T3 is
destroyed and two different two-tori T a

2 and T a∗
2 result. These

are symmetrically related: KzT
a

2 = T a∗
2 .

Symmetry-breaking SNIC bifurcations in small-aspect-
ratio Taylor-Couette flows between a symmetric 2-torus
(modulated rotating waves) and a symmetrically related 1-
tori (rotating waves) have been observed experimentally and
numerically [50–52]. An analogous Z2 symmetry-breaking
SNIC bifurcation has also been found in rotating convection
[53], again with the SNIC bifurcation taking place on a
symmetric 2-torus and the saddles and nodes involved being
conjugate pairs of 1-tori (rotating wave states). In another
very-small-aspect-ratio Taylor-Couette flow with only the
inner cylinder rotating, a similar SNIC bifurcation was found
numerically to occur on a 3-torus with the saddle nodes being
Z2-conjugate 2-tori (modulated rotating waves) [46] and there
is experimental evidence that is suggestive of the existence of
the 3-torus involved [8,9].

Similar bifurcations not of the solutions, but of some
invariant sets such as low-dimensional tori or strange attractors
have been reported in other problems and in particular in
chaotic or even turbulent flows. These bifurcations can be
symmetry breaking or symmetry restoring and may play
an important role in the transition to turbulence and in the
characterization of the different turbulent states [54–56]. It
has also been suggested that reversals of the geomagnetic
poles may be explained in terms of symmetry-breaking SNIC
bifurcations in a turbulent setting [57–59].

Taylor-Couette flow at small aspect ratios has shown itself
to be a good paradigm for studying symmetry-breaking bifur-
cations and for the study of not only the solutions but also more
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complex low-dimensional objects: invariant tori and attractors.
These studies can improve our understanding of the transition
to turbulence and it is worthwhile continuing the study of
geometrically simple and well-posed canonical systems such
as Taylor-Couette flow at small aspect ratio in this regard.
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