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This paper presents numerical simulations of the Taylor vortex flow (TVF) under the influence of an externally applied

alternating axial mass flux (through-flow) in a Taylor-Couette system with axial periodic boundary conditions. Such an

axially modulating flow can lead to a significant variation in the onset of primary instabilities. Depending on the system

parameters, the effect can be both stabilizing and destabilizing – that is shifting the bifurcation threshold to larger or

smaller control parameters, respectively. It is found that the system response around the primary instability is sensitive

to and critically influenced by an alternating mass flux, particularly the modulation frequency. We show that such an

alternating axial flow represents an easily and, more importantly, precisely controllable key parameter to change the

non-linear system response from subcritical to supercritical behavior and vice versa. Furthermore, we observe different

parameter regimes with regular and irregular intermittent flow dynamics.

■✳ ■◆❚❘❖❉❯❈❚■❖◆

Since the seminal work of G. I. Taylor1, the flow in the

gap between two concentric, independently rotating cylinders

– that is, the Taylor-Couette flow – has been the subject of

numerous intensive theoretical, numerical, and experimental

investigations and has led to a deeper understanding of fun-

damental hydrodynamic concepts and stabilities1,2. The su-

perposition of the basic circular Couette flow (CCF) and a

pressure-driven axial flow in an annulus leads to a configu-

ration in which two mechanisms for instability are present.

Here, the centrifugal instability, which is based on the curved

streamlines of the CCF, competes with the shear instability,

which is based on the axial flow.

This study is primarily driven by the several essential en-

gineering and technological uses of such a system setup – a

pressure-driven axial mass flux in an annulus between rotat-

ing cylinders. Apart from traditional aspects in centrifugal

extractors11, and biological reactors12, key applications range

from rotating filtration of suspensions and water treatment by

reverse osmosis3–7 to medical use for blood filtration8–10.

Almost all research thus far on the Taylor-Couette flow

has focused on axial through-flow and has only examined

the static (time-independent) case of continuous axial mass

flux13–17. Based on Taylor’s work1, numerous impacts of

such externally induced flow have been studied throughout

the last century. The list is far too long to be completely

constituted here". These works include the linear analysis

of the competition between the two competing instabilities

– shear and centrifugal stability mechanisms19,20; the linear

analysis of Taylor vortex flow (TVF) and spiral vortex flow

(spirals, SPI) fronts and pulses21,22; weakly nonlinear bifur-

cation analysis16,18 of axially extended spiral, ribbon, and

mixed vortex states with homogeneous amplitudes2,23; and

experimental measurements of velocity fields by particle im-

age velocimetry17. Numerous other theoretical and numeri-

cal investigations have focused on non-linear pattern selection

a)http://www.sebastianaltmeyer.de.

in the absolutely unstable regime under downstream evolv-

ing intensity envelopes24, the effect of thermal noise25,26, and

on studies of the changes in behavior around and across the

convective-absolute stability boundary15,22,27.

All the aforementioned research reaches the same conclu-

sion, which is that the system’s stability is altered when an

axial flow is added to the annulus. Depending on the charac-

teristics and flow configurations involved, there is either sta-

bilization or destabilization14 of the CCF’s fundamental state.

Consequently, changes are made to the crucial Reynolds num-

ber, wavelength, and vortex shape in addition to the funda-

mental bifurcating thresholds. Depending on the parameter

values, the dominant bifurcating flow state can alternate be-

tween SPI14,22,28 and TVF, with the latter being preferred as

axial flow increases. More recently, research has also been

conducted on more complex fluids with axial mass flux29,30.

With knowledge of the effect of a static applied mass flux,

the question that arises is how the system reacts to periodic

forcing. A periodically modulated, externally applied axial

mass flux is one way to introduce such a driving force into the

system. This leads to a time-dependent axial Reynolds num-

ber Re(t). In the present study, we investigate such an alter-

nating axial flow with specific attention to the control parame-

ters around the bifurcation threshold of the primary instability.

Understanding the evolving dynamics and response of the sys-

tem as it moves along the edge of instability between sub- and

supercritical states is a major focus of the present study. The

effects of alternating axial through-flow and the resultant in-

teractions and changes in the hydrodynamics are investigated.

The variations in modulation frequency ΩRe and amplitude

result in a significant change in system stability. We illustrate

that such an alternating axial flow leads to intermittent behav-

ior between supercritical and subcritical flow dynamics, while

this intermittency can be either regular or irregular. In conclu-

sion, such a setup may provide a simple and accurate means

to balance the system to be operated subcritically, supercriti-

cally, or intermittently.
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Controlling Couette flow by alternating axial mass flux 2

■■✳ ▼❆❚❊❘■❆▲❙ ❆◆❉ ▼❊❚❍❖❉❙

❆✳ ●♦✈❡r♥✐♥❣ ❡q✉❛t✐♦♥s

We consider the Taylor-Couette flow1,2 – the flow driven

in an annular gap between two independently rotating cylin-

ders, where the inner cylinder of radius Ri rotates at angu-

lar velocity ωi and the outer cylinder of radius Ro is at rest.

In the present study, we utilize axial periodic boundary con-

ditions, which are set to λ/(Ro − Ri) = 1.6 (λ is the ax-

ial wavelength) – that correspond to an axial wavenumber

k = (2π/λ ) = 3.927. The fluid in the annulus is assumed to

be Newtonian, isothermal, and incompressible with kinematic

viscosity, ν . The non-dimensional Navier-Stokes equations

that govern the flow are

∂tu+(u ·∇)u =−∇p+∇2
u, ∇ ·u = 0, (1)

where u = (u,v,w) is the velocity in cylindrical coordinates

(r,θ ,z) and the corresponding vorticity is ∇×u = (ξ ,η ,ζ ).
The system is governed by the following independent non-

dimensional parameters: the inner Reynolds number (the ratio

between inertia and viscous forces): Rei = ωiRid/ν , the axial

Reynolds number: Re = ⟨wAPF(r, t)⟩ (see below), and the ra-

dius ratio: b = Ri/Ro. In this study, a fixed wide-gap radius

ratio b = 0.5 is used and length and time scales of the system

are set by the gap width d = Ro −Ri and the diffusion time

d2/ν , respectively. The pressure in the fluid is normalized by

ρν2/d2. Further, boundary conditions on the cylindrical sur-

faces are u(ri,θ ,z, t) = (0,Rei,0) and u(ro,θ ,z, t) = (0,0,0),
with the non-dimensional inner [outer] radius ri[o] = Ri[o]/d.

❇✳ ❊①t❡r♥❛❧ ❛①✐❛❧ t❤r♦✉❣❤✲✢♦✇ Re

The external axial mass flux in the annulus is forced by a

time-dependent external pressure gradient with the magnitude

∂z pAPF(t) = ∂z[pS,APF + pM,APF sin(ΩRet)] (2)

to the axial velocity component in the Navier-Stokes equa-

tions (Eq. (1)). In the subcritical region (below the onset of

any vortex structure), this pressure gradient forces an annular

Poiseuille flow (APF)31,32. The radial profile of this axial flow

velocity is given by

wAPF(r, t) =
∂z pAPF(t)

4

[

r2 +
(1+b) lnr

(1−b) lnb
(3)

+
(1+b) ln(1−b)

(1−b) lnb
−

1

(1−b)2

]

.

The analytical solution (Eq. (3)) was checked to be repro-

duced by our numerical code. The radial mean values ⟨·⟩r of

the static and modulated contribution can be used to define the

time-dependent axial flow Reynolds number:

Re(t) := ⟨wAPF(r, t)⟩r = ∂z pAPF(t)⟨wAPF(r)⟩r

= −
∂z pS,APF

8

1−b2+(1+b2) lnb

(1−b)2 lnb
−

∂z pM,APF sin(ΩRet)
8

1−b2+(1+b2) lnb

(1−b)2 lnb

= ReS +ReM sin(ΩRet), (4)

2π
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FIG. 1. (a) Schematic representation of the Taylor-Couette system

to illustrate the (static) axial flow in an inner cylinder rotating con-

figuration with a sketch of the laminar velocity profile v(r,θ) (not to

scale). The imposed axial mass flux Re is considered positive from

bottom to top. (b) Schematic representation of the pressure gradient

(Eq. (2)) and the alternating velocity profile (axial Reynolds number

Re(t)) as a function of time (normalized over a period). (c) Arrows

I and II indicate the parameter space under investigation, which is

spanned by ReS ∈ [0,40] and ReM ∈ [0,20]. The explored parameter

range in oscillating frequency spans 2× 10−3 ⩽ ΩH ⩽ 103. Points

A–D indicate the parameters for supercritical flows at Rei = 100. III

and IV correspond to the set of parameters around the onset of sta-

bility for TVF in point B at Rei = 73.

with the three control parameters: ReS is the static contribu-

tion, ReM is the modulation amplitude, and ΩRe is the modula-

tion frequency. Re(t) quantifies the additional axial pressure

gradient applied externally. Therefore, a positive [negative]

Re(t) indicates an upward [downward] axial flow, wAPF(r, t),
in the positive [negative] z-direction (see Fig. 1(b)). This
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Controlling Couette flow by alternating axial mass flux 3

implies that an axial flow can be characterized by the axial

Reynolds number Re(t) (Eq. (4)). Thus, positive Re favors

[unfavors] L1-SPI [R1-SPI], as it is aligned [opposite] with

the natural axial propagation of this flow structure.

In the present study, the system is identified as subcritical

when for given system parameters only the basic state – here

the CCF if Re = 0 or a combined circular Couette + annular

Poiseuille flow (CCF-APF) if Re ̸= 0 – is present in the sys-

tem. On the other hand, supercritical indicates that at least

one non-trivial solution solution exists, apart from the CCF

(CCF-APF) basic state.

❈✳ ❙②♠♠❡tr✐❡s

The governing equations and boundary conditions are in-

variant under arbitrary rotations Rα around the axis, arbitrary

axial translation Zl , and with respect to temporal translations

φt0 . The effects of these symmetries on the velocity field are

Rα(u,v,w)(r,θ ,z, t) = (u,v,w)(r,θ +α,z, t), (5a)

Zl(u,v,w)(r,θ ,z, t) = (u,v,w)(r,θ ,z+ l, t), (5b)

φt0(u,v,w)(r,θ ,z, t) = (u,v,w)(r,θ ,z, t + t0). (5c)

These idealizations lead to the CCF as the unique basic

state, which depends only on r. The system has SO(2)×O(2)
symmetry, where SO(2) is the group of arbitrary rotations

around the axis and O(2) is the group that contains the re-

flection at arbitrary height z along with translations in z. The

mean axial flux, which may be zero, remains unchanged along

the radial direction and all symmetries (Eq. (5)) are preserved.

For a finite axial flow Re ̸= 0 , the symmetry is invariant when

switching between the two degenerate spiral vortex flows

(left- and right-handed, L1-SPI and R1-SPI) along with the

inversion of the axial flow direction of ReS:

L1-SPI(ReS,α) = R1-SPI(−ReS,α). (6)

The system symmetry with respect to ReS is clearly visible in

Fig. 2.

❉✳ ◆✉♠❡r✐❝❛❧ ♠❡t❤♦❞

The Navier-Stokes equations (Eq. (1)) are solved using a

second-order time-splitting method with consistent boundary

conditions for the pressure33,34. Our code G1D336 is a com-

bination of a finite-difference method in the radial and axial

directions (r,z) and a Fourier-Galerkin expansion in the az-

imuthal direction (θ) with time splitting, which leads to the

following decomposition

f (r,θ ,z, t) = ∑
m

fm(r,z, t)eimθ (7)

of all fields f ∈ {u,v,w, p}. In this study, only axial peri-

odic boundary conditions are considered. Here, we selected

mmax = 10 (where m is the azimuthal wavenumber) to provide

reasonable accuracy for the parameter range and flow struc-

tures under consideration. Further, uniform grid with a spac-

ing δ r = δ z = 0.02 and time steps δ t < 1/3800 is considered.

A forward Time, centered space (FTCS) algorithm37 is uti-

lized to solve the system of coupled equations for the ampli-

tudes fm(r,z, t) of the azimuthal normal modes −mmax ⩽ m ⩽
mmax. Further, the method of “artificial compressibility”38 is

considered for iteratively adjustment of pressure and velocity

fields with respect to each other.

d p(n) = −β∇ ·u(n) (0 < β < 1),

p(n+1) = p(n)+d p(n), (8)

u
(n+1) = u

(n)−∆t∇(d p(n)).

The pressure correction d p(n) in the nth iteration step being

proportional to the divergence of u
(n) is utilized to adapt the

velocity field u
(n+1). In addition, the iteration loop (Eq. 8)

is separately executed for each azimuthal Fourier mode. It is

iterated until ∇ ·u becomes sufficiently small for each m mode

considered – the magnitude of the total divergence never ex-

ceeded 0.02 and was typically much smaller. Time steps were

always well below the von Neumann stability criterion and

by more than a factor of three below the Courant-Friederichs-

Lewy criterion. Hereafter, the next FTCS time step is exe-

cuted.

For diagnostic purposes, we also evaluate the complex

mode amplitudes fm,n(r, t), which we obtain from a Fourier

decomposition in the axial direction

fm(r,z, t) = ∑
n

fm,n(r, t)einkz. (9)

❊✳ P❛r❛♠❡t❡r s❡tt✐♥❣ ❛♥❞ q✉❛♥t✐t✐❡s

The parameter space explored in this study lies between

ReS ∈ [−40,40] and ReM ∈ [−20,20]. Further, we keep the

outer cylinder at rest and investigate the effects of the time-

dependent axial flow Re(t) on the dynamics of the different

flow states. Trajectories I and II depicted in the parameter

space of Fig. 1(c) represent a purely static ReS and a purely al-

ternating axial ReM flow, respectively. Points A–D depict the

parameters for supercritical flows (TVF and SPI) at Rei = 100.

Further, trajectories III and IV highlight the parameters where

we perform a more detailed investigation around the onset of

instability for TVF at point B and Rei = 73.

Flow states are characterized by the modal kinetic energy

Ekin as a global measure:

Ekin = ∑
m

Em =
1

2

∫ 2π

0

∫ λ

0

∫ ro

ri

umu
∗
mrdrdzdθ , (10)

where um (u∗
m) is the m-th (complex conjugate) Fourier mode,

Eq. (7), of the velocity field. Thus, in case of axisymmet-

ric solutions (m = 0)– for example CCF and TVF, only E0

is non-zero. It must be noted that CCF and TVF are both

pure m = 0 solutions and, therefore, an additional parame-

ter – for example velocity profile – is required to be able to
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Controlling Couette flow by alternating axial mass flux 4

distinguish between them. If necessary, we consider the time-

averaged quantity (over a period T ) Ekin =
∫ T

0 Ekindt and the

time-averaged mode amplitudes |um,n|. Note that the period

time of a particular solution was considered when investigat-

ing time-averaged quantities. Therefore, the period time of

a solution depends on the parameters of a system, which are

typically, different for different flow structures. As a local

measure to characterize flow states, we also consider the az-

imuthal vorticity, η = ∂zu−∂rw, on the inner cylinder and at

mid-gap at two symmetrically displaced points on the mid-

plane – η−[+] = (ri,0,Γ/4[3Γ/4], t).

■■■✳ ❘❊❙❯▲❚❙

❆✳ ❙t❛❜✐❧✐t② ❜❡❤❛✈✐♦r

✶✳ ❙t❛t✐❝ ❛①✐❛❧ t❤r♦✉❣❤✲✢♦✇ ✭ReM = 0✮

a. Supercritical flow states: Let us quickly review the

case of a fully static axial flow ReS (ReM = 0) for a fixed inner

Reynolds number, Rei = 100 (Fig. 2, outer cylinder at rest),

before moving on to an external modulated axial flow. For

the parameters given here, the different solutions – TVF, L1-

SPI, and R1-SPI – partially stably coexist; therefore, the so-

lution toward which the code will converge depends on the

initial condition. Sitting in one stable solution, this branch is

followed by variation in ReS until the corresponding solution

loses stability and transients into another remaining stable so-

lution. For the various solutions TVF (blue circles), L1-SPI

(orange triangles upwards), and R1-SPI (red triangles down-

wards), the variations in the kinetic energy Ekin (Eq. (10)) and

the radial flow intensity (i.e., the amplitude of the radial mode,

see Eq. (9)) in the center of the gap are displayed. These three

flow configurations steadily coexist at ReS = 0, with the two

spirals, L1-SPI and R1-SPI, being mirror reflections of one

another. Consequently, |u1,1|= |u1,−1| and their respective ax-

ial velocities point in the opposite direction but have the same

magnitude.

For any finite flow, ReS ̸= 0, the mirror symmetry between

the L1-SPI and R1-SPI is broken, and as Fig. 2 illustrates,

the radial flow amplitudes evolve differently with ReS. For

a minor flow rate of −5.4 ≲ ReS ≲ 5.4, the two SPIs coex-

ist and are bistable. In this case, the initial condition deter-

mines whether one or the other is realized. When ReS in-

creases, a shift in the phase velocity’s sign (wph goes through

zero) results in a loss of stability for either SPI14,22. Instead

of transitioning to the remaining stable SPI state, the flow

preferably transitions to the stable TVF state. Thus, when

R1-SPI is destabilized with increasing ReS, it is typically the

|u0,1| mode of TVF that grows rather than the |u1,1| mode of

L1-SPI. Moreover numerically eliminating the TVF solution

(here, numerical suppressing m = 0 modes). The SPI that is

unfavored by the through-flow Re loses its stability and in this

case, the transition occurs (with TVF being unavailable as a

final state) to the favored SPI in a manner that seems to be

similar to the one described before. Moreover, for large val-

11

12

13
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15

16

E
k
in

-40 -20 0 20 40
Re

S

2

3

4

5

6

|u
m

,n
|

TVF
L1-SPI
R1-SPI

×10
3

FIG. 2. Influence of the stationary external flow ReS (see arrow I

in Fig. 1(c)) on different vortex structures at Rei = 100. Shown

are (top) the modal kinetic energy, Ekin, and (bottom) the primary

Fourier amplitudes, |um,n|, of the radial flow field in the center of

the gap r = 0.5 for L1-SPI (u1,1), R1-SPI (u1,−1), and TVF (u0,1).
Vertical arrows indicate transitions after loss of stability (see text for

details). The unstable TVF solution is obtained by simulations re-

stricted to the m = 0 subspace. Note the system symmetry with re-

spect to static axial through-flow, Res (see Eq. (6)).

ues of ReS ≳ 30.3 (ReS ≲−30.3), TVF becomes unstable and

the flow transitions toward the preferred spiral solution L1-

SPI (R1-SPI). Thus, for given ReS, the TVF solution does not

exist; Consequently the system transitions to another stable

solution – here SPI, which exists is for the new parameters.

For TVF, an increase in |ReS| leads to a direct increase in

Ekin. In contrast, for both L1-SPI and R1-SPI, an increase in

|ReS| initially leads to a slight decrease in Ekin before it also

increases for larger |ReS|, which is to TVF but slightly less

strong. Note, the system symmetry with respect to static axial

through-flow, Res (Fig. 2 and Eq. (6)).

b. Shifting primary instabilities: Consider that a static

axial flow (ReM = 0) leads to the stabilization of the CCF

basic state. Then, the bifurcation thresholds for primary in-

stabilities, TVF and SPI, shift to larger Rei with increasing

flow strength ReS (Fig. 3(a)). Note that only positive ReS are

shown for reasons of symmetry (Eq. (6)). Without axial flow

– that is Re = 0 – the critical value for TVF is Rei
TV F = 68.8,

while SPI is unstable in the beginning (Rei
SPI = 72.335).

We also performed a linear stability analysis of the com-

bined CCF-APF state that revealed that the amplitudes of the

L1[R1]-SPI solutions go to zero at the bifurcation threshold

values of Rei(Re = 0) ≈ 72.3. In addition, the numerical so-

lutions of the full nonlinear revealed, that both L1-SPI and

R1-SPI are unstable close to this threshold. It is worth noting

that other axial wavenumber (here set to k = 3.927) will lead

to other critical Reynolds numbers. As is evident in Fig. 2,

the axial flow favors helical SPIs14,17,21,22 therefore, as ReS

increases, the primary stable appearing solution changes from

TVF to SPI at ReS ≈ 15.
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Controlling Couette flow by alternating axial mass flux 5

(a)

(b)

FIG. 3. Stability with axial flow. Stability limits for (a) static axial

flow ReS (ReM = 0). Modulated axial flow ReM vs. Rei for (b) TVF

and (c) SPI, respectively. Note that in (b) TVF is unstable for both

ReS = 20 and ReS = 30, respectively. Vertical dashed lines in (a)
indicate the parameters for which bifurcation diagrams are depicted

in Fig. 4.

✷✳ ▼♦❞✉❧❛t❡❞ ❛①✐❛❧ ✢♦✇ ✭ReM ̸= 0✮

In comparison to the variation with increasing the flow

strength, ReS, for a pure static axial flow, an increase in the

modulation amplitude, ReM , has a more versatile effect on

the system. For TVF and pure modulation flow (ReS = 0),

increasing the modulation amplitude ReM also stabilizes the

CCF basic state (Fig. 3(b)), with the bifurcation thresholds

shifting to larger Rei. However, if a finite static contribu-

tion ReS ̸= 0 is present, the onset is only slightly affected.

In addition, a small de-stabilization can be observed with in-

creasing ReM , which is most pronounced for larger ReS. On

the other hand, for SPI, the bifurcation thresholds are mainly

shifted downward with increasing ReM , thereby implying a

de-stabilization of the CCF (Fig. 3(b)). This effect is most

pronounced for ReS = 15 and weakens with increasing static

contribution, ReS.

✸✳ ❇✐❢✉r❝❛t✐♦♥ ❜❡❤❛✈✐♦r
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FIG. 4. Time-averaged mode amplitudes |u0,1| and |u1,1| of (domi-

nant) radial flow field amplitudes of (a) TVF (ReS = 0) and (b) SPI

(ReS = 30), respectively, at mid-gap as a function of the Reynolds

number Rei (parameters indicated by vertical dashed lines in Fig. 3);

modulation frequency ΩRe = 1 (see Fig. 5). Note that the time aver-

age is identical for all curves (a) ⟨Re⟩t = 0 and (b) ⟨Re⟩t = 30.

Both TVF and SPI are primary bifurcating supercritical

flow structures, with TVF occurring in a centrifugal instabil-

ity and SPI in a symmetry-breaking Hopf bifurcation. How-

ever, with a finite modulation ReM ̸= 0, the corresponding ap-

proaches of TVF and SPI are blurred, which leads to the sys-

tem appearing to be transient (between supercritical and sub-

critical) in a parameter range around the onset of bifurcation

(Fig. 4). This fuzzy effect becomes larger with increasing ReM

as the parameter range increases with the transient behavior,

which is visible in the tongue-like evolution of the mode am-

plitudes (|u0,1|, |u,1,1|) close to the onset instead of a classical

square root behavior14,22,28,35. While the effect is moderate

for TVF, it is much stronger for SPI and, furthermore, a gen-

eral change in the bifurcation behavior can be observed. With

increasing ReM , the the corresponding curves |u1,1| become

flatter and more indented.
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Controlling Couette flow by alternating axial mass flux 6

❇✳ ◆♦♥❧✐♥❡❛r ❞②♥❛♠✐❝ s②st❡♠ r❡s♣♦♥s❡
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FIG. 5. Influence of the modulation frequency ΩRe on the flow dy-

namics of the TVF at Rei = 100. Mode variation (a) |u0,1| and mode

amplitude variation (b) ∆|u0,1| = max|u0,1| −min|u0,1| with varia-

tion of the drive frequency ΩRe.

Figure 5 illustrates the influence of the modulation fre-

quency ΩRe on the flow dynamics at TVF (Rei = 100). For

small ΩRe, the average amplitudes of the modes |u0,1| are

smaller compared to the modes |u0,1| for the scenario in which

there is an absence of any axial flow, Re = 0. Here, the re-

duction becomes larger with increasing modulation amplitude

ReM , which is consistent with the stabilization of the CCF ba-

sic state and the shift of the primary bifurcation threshold to

larger control parameters (see Fig. 3). With increasing ΩRe,

the average amplitudes of the modes |u0,1| begin collapsing

toward the corresponding mode |u0,1(Re = 0)| if no alternat-

ing axial flow is present – that is, no axial flow. Figure 5(b)
provides another perspective of this collapse and illustrates

the mode amplitude variation ∆|u0,1|= max|u0,1|−min|u0,1|.
Therefore, in the limit range of high frequencies, only the

mean value is significant. Interestingly, for very high frequen-

cies, ΩRe ≳ 250, the average amplitudes of the modes |u0,1|
are slightly larger than even the one for the static case (see

inset Fig. 5(a)). Further investigations are required to under-

stand this observation and to draw any conclusion.

✶✳ ❙✉♣❡r❝r✐t✐❝❛❧ ✢♦✇ st❛t❡s

In the following account, we consider supercritical flow

states, TVF and SPI at Rei = 100 (far away from the onset

of their respective instabilities (Rei
TV F(Re = 0) = 68.8) and

Rei
SPI(Re = 0) = 72.3)35) and analyze the impact of an exter-

nal superimposed alternating axial flow.

a. TVF: Figure 6 depicts the oscillation of the control

function Re(t) together with the non-linear system response,

illustrated by the mode amplitudes |u0,1| as a function of

the reduced time t/TRe(TRe = 2π/ΩRe being the associated

modulation period). Temporal oscillations are presented for

ReS = ReM ∈ {5,10,15,20} at different frequencies ΩRe, as

depicted.

The results for different modulation amplitudes ReM are

qualitatively similar. In the high-frequency limit (red dashed

lines in Fig. 6), only the time average of Re(t) affects the sta-

bility behavior in this limit, the stability boundary coincides

with a static stability boundary using an equivalent static ax-

ial flow, ReS, which is equivalent to the corresponding mean

value ⟨ReS⟩t ∈ {5,10,15,20} (values indicated in each sub-

plot). For the modulation with the high frequency ΩRe = 100,

the flow dynamics is basically averaged (also see Fig. 5) and

variations in the dominant mode amplitude |u0,1| are small

compared to its mean value. To be precise, the modulation

amplitude ∆|u0,1| is much less than 1% of its time mean. How-

ever, a phase shift is found between the maximum and mini-

mum of Re(t) (a) versus the minimum and maximum of the

mode amplitudes |u0,1| (b− e), with the inertia of the fluid

leading to this time lag. Consistently, this phase shift de-

creases with decreasing frequency. Meanwhile, the oscilla-

tion amplitudes increase with smaller ΩRe and by lowering the

modulation frequency, thereby approaching the correspond-

ing values (dotted horizontal lines) for a pure static axial flow

curve. It is worth noting that small deviations persist in the

vicinity of the bifurcation threshold as the dynamics become

infinitely slow there.

As one approaches the static limit, the strong anharmonic

behavior in the mode amplitudes |u0,1| for very low frequen-

cies illustrates how the effect on the flow dynamics increases

as Re(t) increases. The stabilization effect is non-linear and

stronger for a larger modulation amplitude, ReM , as illus-

trated in Fig. 3. This fact is depicted in Fig. 6, in which

the positive modulation amplitude ReM > ReS has a steeper

or larger variation ∆|u0,1|, and the negative modulation ampli-

tude ReM < ReS has a considerably flatter profile |u0,1|.
The mode amplitudes |u0,1|, within one period, somewhat

overshoot the maximum and lowest values of their static coun-

terparts at low frequencies, ΩRe, approaching the static sit-

uation. For ΩRe ∈ {2,5}, this overshoot is evident, and it

is particularly noticeable around Rem,max for t/TRe ≈ 0.25.

The mode amplitudes |u0,1| wander around the average well

within their maximum and lowest bounds for high frequen-

cies, ΩRe ≳ 20. This overshooting is brought on by the fluid’s

inherent inertia.
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Controlling Couette flow by alternating axial mass flux 7

(b) (c)

(e)(d)

(a)

FIG. 6. Supercritical TVF under alternating axial flow Re(t) with different driving frequencies ΩRe. (a) Temporal oscillations of the control

function Re(t) = ReS +ReM sin(ΩRet) (Eq. (4)). The dominant mode amplitude |u0,1| as a function of the reduced time t/TRe(TRe = 2π/ΩRe

being the modulation period associated with the corresponding frequency) for parameter values (b) ReS = 5 = ReM ; (c) ReS = 10 = ReM ; (d)
ReS = 15 = ReM ; and (e) ReS = 20 = ReM , respectively, are displayed (see Fig. 1(c)). Horizontal dotted lines indicate the high frequency limit

which is equivalent to stationary driving with corresponding mean values ReS. The horizontal gray dotted lines indicate the corresponding

minima (min[Re(t)]) and maxima (max[Re(t)]), respectively (Rei = 100). Note the different scaling on the ordinate; moreover, for (e) ReS =
20 = ReM and ΩRe = 0.5, no curve is depicted as TVF becomes unstable. Here, the system transitions to the SPI solution and remains there.

b. SPI: As predicted in Fig. 3, increasing ReM mainly

destabilizes the CCF basic state against SPI. As Fig. 7 illus-

trates, the entire flow dynamics appear more complicated for

SPI than for TVF. As seen for TVF (Fig. 6) and SPI in the high

frequency limit, only the average values are of significance. A

further common observation is the appearance of overshoot-

ing of the corresponding stationary values, which become en-

larged with increasing modulation amplitude, ReM . Further,

at larger parameter ReS = ReM ∈ {10,15,20} (Fig. 7(c− e)),

the profiles of the mode amplitudes |u1,1| undergo significant

change. For small values, ReS = 5 = ReM (Fig. 7(b)), the

profiles for SPI are qualitatively similar compared to the pro-

files of TVF (Fig. 6) in the sense that they illustrate one max-

imum and one minimum value within a single oscillation pe-

riod TRe. However, this similarity is lost for larger parameters

ReS = ReM (Fig. 7(c−e)) with the appearance of two minima

and maxima, respectively, within one period, TRe. Interest-

ingly, the appearance of the two minima in time coincide with
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Controlling Couette flow by alternating axial mass flux 8

(b) (c)

(e)(d)

(a)

FIG. 7. This is similar to Fig. 6, but depicts supercritical SPI under alternating axial flow Re(t) with different driving frequencies ΩRe at (b)
ReS = 5 = ReM ; (c) ReS = 10 = ReM ; (d) ReS = 15 = ReM ; and (e) ReS = 20 = ReM , respectively (Rei = 100).

the presence of two vortices within the bulk side-by-side in

radial direction. However, thus far, we have been unable to

find a direct correlation, further investigations in this regard

are required. It is worth mentioning that these are not simi-

lar to the known twin-vortices, which commonly have m = 0

and therefore, have azimuthal closed structures and originate

in a different way. Here, the cause of appearance is different.

First, SPI are already natural helical structures that also prop-

agate in the axial direction, which can be enforced, reduced,

or suppressed by axial flow Re depending on its direction14,22

– second, here only the inner cylinder is driven (outer cylin-

der at rest). For lower frequencies and due to the inertia of the

fluid (only driven from the inner cylinder), this results in the

formation of this second vortex in the radial direction.

✷✳ ◆♦♥❧✐♥❡❛r s②st❡♠ r❡s♣♦♥s❡ ✕ ❝r♦ss✐♥❣ t❤❡ ♣r✐♠❛r②
✐♥st❛❜✐❧✐t②

Next, we concentrate on an alternating axial flow for val-

ues, such that, over a driving period (see Fig. 3(a)), the system

will transition between subcritical and supercritical responses.

Specifically, we take into account Rei = 73 and an alternating

axial flow with two distinct modulation amplitudes, ReM = 5

and ReM = 10, respectively, and a fixed stationary contribu-

tion, ReS = 10. With regard to the pure static case, the sys-

tem becomes temporally subcritical for both modulation am-

plitudes considered, ReM , but it is totally supercritical (see

point B in Figs. 1 and 3(a)).
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Controlling Couette flow by alternating axial mass flux 9

(2c)(1c)

(2a)

(2b)(1b)

(1a)

FIG. 8. Nonlinear system response of TVF around the fundamental instability. (a) Time evolution of the modulation amplitudes (1) ReM = 5

and (2) ReM = 10, respectively, and the dominant mode amplitude |u0,1| as a function of time, t, for various modulation frequency, ΩRe, as

indicated (see trajectories III and IV in Fig. 1). At t = 0, only a static axial flow ReS = 10 (ReM = 0) is present before any of these modulations

begins. For larger frequencies, ΩRe, the mode amplitudes, |u0,1|, are only displayed until equilibrium is reached; for the sake of clarity, long

time simulations have been carried out to confirm that these are all permanent states. For the lowest frequency (ΩRe = 0.05), a minimum of

five repetitions were covered to ensure a permanent (and not transient) behavior. As a function of the reduced time t/TRe, (c) is the same as

(a) (see Fig. 7). Bear in mind that the system is still supercritical in (1) for modulated driving with ΩRe ≳ 0.45. Apart from (2), the system

remains supercritical for large driving with ΩRe ≳ 5.6. However, it remains subcritical for moderate modulated driving with 5.6 ≳ ΩRe ≳ 0.2,

and it alternates between subcritical and supercritical response for small driving with 0.2 ≳ ΩRe. Furthermore, within a narrow parameter

range of 0.08 ≲ ReΩ ≲ 0.12, the system exhibits irregular intermittent behavior (see Figs. 10 and 11 for details). Further control parameter is

Rei = 73.

a. Small modulation amplitude (ReM = 5). In this case,

the system only briefly approaches subcriticality. The time

averaged axial flow ⟨Re⟩t for modulated driving (dashed red

line in Fig. 8(1a,1c)) comes together with the static case

ReS = 10 (ReM = 0) at a high frequency limit (ΩRe ≳ 100).

The oscillating mode amplitude |u0,1| experiences a contin-

uous increase in amplitude |∆u0,1| with decreasing frequency

ΩRe, accompanied by a reduction in its mean value |u0,1|. The

mode amplitude |u0,1| eventually approaches temporally zero

for frequencies ΩRe ≲ 0.25, thereby suggesting that the sys-

tem is now subcritical. The smaller the driving frequency,

ΩRe, the longer the system remains subcritical (Fig. 8(1c)).

At these low frequencies, the mode amplitude |u0,1| rapidly

increases during a period and then relaxes in a manner that is
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(f2)(f1)

(e1) (e2)

(d2)(d1)

(g2)(g1)

(a)

(b)

(c)

FIG. 9. Flow dynamics with time t for stable TVF with driving frequencies ΩRe for ReS = 10 and ReM = 10, as shown. Time evolution

of the radial velocity field at mid-gap and (b) kinetic energy Ekin and η−, representing the dominant mode amplitudes |u0,1| (see Eq. (9)).

(c) Corresponding phase portrait in (η+,η−) plane (see text for more discussion). (c)− ( f ) Azimuthal vorticity space-time plots η (1)
η(z = 0,θ = 0,r = d/2) and the radial speed (2) u(z = 0,θ = 0,r = d/2) for various frequencies, (red denotes dark grey and yellow denotes

light grey) correspond to positive and negative numbers, respectively. Specifically, (d) ΩRe = 0.2; (e) ΩRe = 0.5; ( f ) ΩRe = 1; and (g)
ΩRe = 2.

similar to values that are close to the stationary case. The os-

cillation profile in the mode amplitudes |u0,1| approaches the

static scenario when ΩRe decreases further. The situation for

the entire supercritical flow state (Fig. 6) and the accompany-

ing extrema (min and max) in the mode amplitudes |u0,1| are

shown to be temporally induced separate from one another.

b. Large modulation amplitude (ReM = 10). The initial

response is comparable to the case for the small modulation

amplitude when the system delves deeper into the subcritical

regime for a larger modulation amplitude, ReM = 10 (see Fig.

3(a)), during one driving period (Fig. 8(2)). With the time-

averaged axial flow ⟨Re⟩t (dashed red line in Fig. 8(2c)),
which is equal to the static case, ReS = 10 (ReM = 0), the
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FIG. 10. The flow dynamics during the TVF decay for ReS = 10,ReM = 10 with driving frequencies ΩRe (see Figs. 9 and 8). (d) ΩRe = 0.2,

(e) ΩRe = 0.5, ( f ) ΩRe = 1, and (g) ΩRe = 2.

system remains supercritical in the high frequency limit. Nev-

ertheless, there are a few obvious distinctions, despite this re-

semblance. First, there is a discontinuity in the modulation

of the mode amplitude |∆u0,1|; in other words, it remains rel-

atively small and of a comparable size. Second, when ΩRe

decreases, the mean values |u0,1| also constantly reduce. Fur-

thermore, the system remains completely subcritical for a lim-

ited range with modulated driving. With regard to modest

modulation amplitude (Fig. 8(1)), this is a novel observation

that has not been discovered thus far. The subcriticality for

the given alternating flow is clearly evident in the decay of the

mode amplitudes |u0,1| in Fig. 8(2a) for modulated driving

with 5.6 ≳ ΩRe ≳ 0.2. Nevertheless, as previously observed

for modest modulation magnitudes, this permanent subcritical

behavior reverts to being merely temporal with additional de-

creases in ΩRe. Consequently, a temporal fluctuation between

subcritical and supercritical system reactions is observed once

more. Similar to the previous observation, there is a rapid in-

crease in the mode amplitude |u0,1|, which is followed by a re-

laxation towards the stationary state. The oscillation increases
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Controlling Couette flow by alternating axial mass flux 12

with a decrease in the modulation frequency ΩRe. Minor vari-

ations in the frequency of the instability and driving frequency

ΩRe may be the result of resonance effects. Further investiga-

tions are required in order to make a conclusive statement.

Stable, supercritical TVF. The flow dynamics evolving

with time t for specific driving frequencies ΩRe (at ReS =
10 = ReM) are depicted in Figure 9; at these frequencies,

TVF are stable existent; the system remains permanently su-

percritical (see Fig. 8(2)). The variation in ∆Ekin grows con-

stantly with decreasing ΩRe, but the mean value Ekin mostly

remains constant. Further, the mode amplitudes |u0,1| have

a monotonically decreasing mean in parallel. It is interest-

ing to note that the mode amplitude variation, |∆u0,1|, is

non-monotonic – increasing initially and then reducing again.

Concurrently, the local measure ∆η− experiences a reduction

in range, transitioning from a basic periodic behavior to a

more intricate “multi-periodic” pattern (combining different

periodicities). Consequently, with smaller frequencies, ΩRe,

the area explored by the trajectories in the phase portrait in the

(η+,η−) plane constantly shrinks towards the CCF solution.

In (η−,η+), the two stationary solutions, CCF and TVF, are

fixed points. With regard to the diagonal line η− = η+, the

(time-dependent) limit cycle solution TVF generated by the

alternating flow (ΩRe ̸= 0) appears symmetric. With variation

in ΩRe, the various space-time plots (d − g) of the azimuthal

vorticity η provide an additional qualitative sense of all the

previously stated alterations.

Decay process. As previously noted, the system be-

comes permanently subcritical for modulated driving with

5.6 ≳ ΩRe ≳ 0.14 at large modulation amplitudes, ReM = 10

(Fig. 8(2)). The evolving flow dynamics that change with time

t during TVF’s decay are depicted in Fig. 10. Together with

the space-time plots of the azimuthal vorticity η− = η(r =
d/2,θ = 0,z) and radial velocity u(r = d/2,θ = 0,z), (red

(dark grey) and yellow (light grey) correspond to positive and

negative values) for a selected frequency ΩRe, the dominant

mode amplitudes |u0,1| are displayed. The decay of TVF

with time is evident in both mode amplitudes: η− nearing

the comparable value for CCF and |u0,1| dropping to zero. In

the meantime, the region that the trajectories in the (η+,η−)
plane have traversed become smaller and closer to the CCF

fixed point solution.

c. Intermittency. The system response shifts from be-

ing permanently subcritical to alternating between subcritical

and supercritical behavior with decreasing driving frequencies

ΩRe. The system exhibits a “regular” (time-periodic) inter-

mittent behavior around the “edge” for ΩRe ≲ 0.07, thereby

implying that it alternates between the supercritical TVF state

and the subcritical CCF state on a periodic basis. According

to Fig. 8(2c), the system remains supercritical for a longer

period of time, TRe, the smaller the driving frequency ΩRe.

In the sense that the corresponding dwell/retention duration in

the subcritical and supercritical regimes remains the same, the

behavior is “regular” intermittent.

At low frequencies, ΩRe ≲ 0.07, the system displays a regu-

lar intermittent behavior between subcritical and supercritical

system response, as is evident for small modulation ampli-

tudes ReM = 5 (Fig. 8). However, around the transition from

the permanent subcritical state CCF (TVF is unstable and de-

cays) to the intermittent behavior between the two – subcriti-

cal and supercritical states – there is a narrow frequency range,

0.13 ≳ ΩRe ≳ 0.07, in which the system response is “irregu-

lar” intermittent. Figure 11 depicts the mode amplitudes and

space-time diagrams for selected frequencies, ΩRe, at which

the system shows this irregular intermittency. In contrast to

the previously seen regular behavior, the system here has no

fixed dwell time in one or the other regime. Therefore, the

dwell time changes from one alternating cycle to the next.

Both the mode amplitudes, |u0,1|, and the azimuthal vorticity,

η−, clearly show the “irregularity”, which is not recognizable

in the kinetic energy Ekin. The phase portrait in the (η+,η−)
plane appears rather similar to that for the decay of TVF (see

Fig. 10), with the main difference being that the phase space

explored by the trajectories is rather large. The correspond-

ing 3D visualization with Ekin reveals a cone-shaped structure

with the CCF fixed-point solution at its apex.

Finally, it is worth mentioning that the observed non-linear

system response is similar to ferrofluidic Couette flow under

an alternating magnetic field39. Thus, the specific focus for

future research will be the study resonance effects due to al-

ternating axial flow, similar to those found for the TVF of a

ferrofluid under an alternating magnetic field40.

■❱✳ ❈❖◆❈▲❯❙■❖◆❙

The impact of an externally imposed time-dependent axial

mass flux (axial pressure gradient, axial through-flow Re(t))
in a wide-gap Taylor-Couette flow was qualitatively and quan-

titatively studied in this paper. TVF and SPI’s primary insta-

bilities are altered. They are shifted towards a larger control

parameter, Rei, for TVF, where a larger modulation ampli-

tude, ReM , results in an increase in the stabilization amount.

This alteration is comparable to that caused by only static ax-

ial through-flow when ReS increases in terms of field strength.

In the high-frequency limit, the system’s temporal evolution

approaches the static stability boundary as the oscillation fre-

quency ΩRe increases. The oscillation profiles become closer

to the stationary curves at rather low modulation frequencies.

Moreover, we discovered that the system response is spe-

cific to driving parameters that were close to the main insta-

bility. Because of this, a system driven by an alternating axial

mass flux might become subcritical or supercritical, or it can

even alternate (regularly or irregularly intermittent) between

the two states.

The non-linear system response based on small and large

modulation amplitudes ReM with respect to variation in

the driving frequency ΩRe is schematically summarized in

Fig. 12. In any event, one solution – supercritical TVF – is

selected as the high frequency limit gets closer to the static

situation.

While hovering and straddling the edge of instability, the

following key features can be characterized by changes in the

driving frequency:

• When the frequency, ΩRe, decreases and the modulation

amplitudes are minimal, the system transitions from be-
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FIG. 11. Illustration of the dynamics of irregular, sporadic flow – irregular intermittent behavior of TVF for ReS = 10,ReM = 10 with driving

frequencies ΩRe, as indicated. Time evolution of (a) dominant mode amplitudes |u0,1| (see Eq. (9)) of the radial velocity field at mid-gap and

(b) kinetic energy Ekin and η−. (c) Corresponding phase portrait in (η+,η−) plane and (d) Three-dimensional visualization (η+,η−,Ekin).
(e)–(i) Space-time plots of the azimuthal vorticity (1) η(r = d/2,θ = 0,z) and radial velocity (2) u(r = d/2,θ = 0,z) (red (dark gray) and

yellow (light gray) correspond to positive and negative values) for different frequencies (e) ΩRe = 0.08, ( f ) ΩRe = 0.09, (g) ΩRe = 0.1, (h)
ΩRe = 0.11, and (i) ΩRe = 0.12.
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ing supercritical to an intermittent scenario in which it

becomes both temporally sub- and supercritical.

• The system first transitions from being supercritical to

permanent subcritical with large modulation amplitudes

and decreasing frequency, ΩRe. Therefore, the system

response is altered to be both temporally subcritical

and supercritical by further reducing the frequency ΩRe

(equivalent to modest modulation amplitudes). How-

ever, the system response is irregular in a limited fre-

quency range of 0.12 ≳ ΩRe ≳ 0.08, which is approxi-

mately the “edge” between pure subcritical and the al-

ternating sub- and supercritical system response – inter-

mittency.

Ω
Re

Ω
Re

TVFTVF TVF

(b)(a)

CCF CCF CCF

TVF

Ir
re

g
u
la

r

IntermittencyIntermittency

FIG. 12. Schematic representation of the change in stability with

ΩRe. As the driving frequency, ΩRe, increases from left to right, the

system transitions from exhibiting regular alternating behavior be-

tween sub- and supercritical flow states to supercritical TVF at small

modulation amplitudes (a). The system exhibits alternating behavior

between sub- and supercritical flow states for large modulation am-

plitudes (b) and increasing frequency. This is followed by irregular

intermittency for a small range in ΩRe and, finally, the system re-

mains entirely subcritical (CCF). Nevertheless, at the high frequency

limit analogue to the scenario with small modulation amplitude, the

system becomes supercritical (TVF) again by increasing ΩRe (see

Fig. 8).

The findings of this paper, along with the spatio-temporal

properties of vorticity fields and the velocity of various flow

states, may open up new directions for the study of the trans-

port properties of rotating flows. Therefore, the frequency

modification of the alternating axial mass flux provides a

rather simple and, importantly, precisely controllable method

to induce subcritical or supercritical behavior in the system

reaction. This could open up fresh avenues for and lead to the

development of new viewpoints toward for industrial applica-

tions. Another important aspect that must be emphasized is

the significant torque disparity that exists between the subcrit-

ical CCF basic states and the supercritical TVF basic states.

The system configuration and parameters that were dis-

cussed in this study are easily experimental accessible. There-

fore, we hope that our computational results will encourage

further experimental studies with the aim of studying trans-

port phenomena and controlling flows with potential industrial

applications – flow separation and filtration devices, oil-sand

separation or extraction of blood plasma – just to mention a

few.
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