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ABSTRACT

We report direct numerical simulations of elastic turbulence in shear-driven flow of a dilute polymer solution within a three-dimensional
straight channel. Most existing approaches in the literature employ the Oldroyd-B model or its advanced version, the finite extensible nonlin-
ear elastic model introduced by Peterlin (FENE-P model), for simulation of polymer hydrodynamics, with their limitations of being contin-
uum models. To overcome such restriction, we explicitly model the dilute polymer solution utilizing a classical bead-spring representation for
each polymer chain and, therefore, also accounting for spatial variations in polymer concentration. We show that the viscoelastic instability
forms in elastic waves and eventually chaotic flow, which persists above the transition with increasing Weissenberg number further into vis-
coelastic turbulence.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0261021

I. INTRODUCTION

To date the transition from laminar flows to instability, turbu-
lence, and chaos is not fully understood and, therefore, is still in the
focus of actual research. Even more, discrepancies between experi-
ments, the linear and nonlinear analysis, and the experiments (known
as the Sommerfeld paradox1) The general findings/observations for
classical plane Poiseuille flow are as follows: (i) it is linearly unstable
for Re > 5772;2 (ii) it is linearly stable for all Reynolds numbers;3 (iii)
in laboratory experiments it undergoes transition to three-dimensional
turbulence for Reynolds numbers between 300 and 400; and (iv) non-
linear asymptotic L2-energy-stability4 has been proved for Reynolds
numbers, Re, below similar values.

While persistent challenges in classical turbulence underscore
inertial complexity, modern drag-reduction strategies increasingly
modify intrinsic fluid properties. Dissolving polymers into viscous sol-
vents produces viscoelastic solutions that suppress turbulent drag
through vortex damping mechanisms leveraged industrially for
energy-efficient transport.5 However, viscoelasticity introduces
elasticity-driven instabilities absent in Newtonian systems: polymer
stretching generates non-inertial turbulence precursors that demand
revised stability analysis frameworks.

Most common viscoelastic instabilities occur due to sufficiently
strong forcing applied to the flow of polymer solutions or strong cou-
pling between the (viscous) fluid flow and the material’s elasticity. To

date, there are enormous amounts of flows that have been demon-
strated to be elastically unstable. In their recent work, Datta et al.6 pro-
vide an excellent overview of a purely elastic flow instability map
(PEFIM, Fig. 2) of the different viscoelastic flow instabilities that have
been documented so far. This work bridges the gap between viscomet-
ric and shear-dominated regimes, offering insights into how elastic
stresses reshape stability thresholds—a critical step toward reconciling
polymer-modified flows with classical turbulence paradigms.

In the simulation of polymers in hydrodynamic media, most
existing approaches in the literature employ the Oldroyd-B model or
its advanced version, the FENE-P model, which treats polymers as an
effective field.7–9 In contrast, our method explicitly models the dilute
polymer solution using a classical bead-spring representation for each
polymer chain.10 This approach overcomes significant limitations of
continuum models, such as accounting for spatial variations in poly-
mer concentration, as observed experimentally under shear condi-
tions,11 and directly resolving chain dynamics, including the tumbling
of individual polymer chains,12 along with excluded volume interac-
tions between monomers. Building on our approach, we present direct
numerical simulations of elastic turbulence in shear-driven flow of the
dilute polymer solution. This study focuses on the modeling of a poly-
mer fluid within a three-dimensional straight channel defined by
Cartesian coordinates (Fig. 1): x (streamwise), y (spanwise), and z
(wall-normal). The channel is confined between parallel plates fully
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filled with the fluid. The shear rate _c is induced by the movement of
the top plate along the x axis at a velocity~u0.

Periodic boundary conditions are applied in both the x- and y-
directions. We characterize the flow using the longest polymeric relax-
ation time, sR, to define the Weissenberg number, Wi ¼ sR _c, which
indicates the balance between elastic and viscous forces. The governing
system requires solving the Navier–Stokes equations (NS) using the
lattice Boltzmann method (LB), coupled with the Langevin equation
solved through molecular dynamics (MD). Further details on the
method are provided in Sec. II below, followed by Sec. III, where we
introduce the studied viscoelastic instability, examine its dynamics and
inner structure, and analyze how other simulation parameters affect
the instability. sR calculations are in the Appendix.

II. MODEL AND METHODS

The fluid motion in our simulations is governed by NS,

@q
@t

þr � ðq~uÞ ¼ 0;

@ðq~uÞ
@t

þr � ðq~u~uÞ ¼ �rpþr � l r~u þ ðr~uÞT
� �h i

þ~F ;
(1)

where q is the fluid density,~u is the velocity field, p is the pressure, l is
the dynamic viscosity, and~F represents external forces.

NS are approximated by the LB scheme,13,14 which solves a dis-
cretized lattice Boltzmann equation (LBE) whose hydrodynamic
moments recover NS in the continuum limit. The governing LBE
reads

fi ~x þ~ciDt; t þ Dtð Þ ¼ fið~x; tÞ þ DtXið~x; tÞ: (2)

Here, fið~x; tÞ denotes the density of fluid particles with discrete velocity
~ci at position~x and time t; Dt is the time step. The collision operator
Xið~x; tÞ, typically modeled via the Bhatnagar–Gross–Krook approxi-
mation as

Xið~x; tÞ ¼ � 1
s

fið~x; tÞ � f eqi ð~x ; tÞ� �
; (3)

drives the system toward equilibrium. The relaxation time s controls
viscosity and f eqi ð~x; tÞ corresponds to the Maxwell–Boltzmann distri-
bution. Our implementation uses the D3Q19 lattice model with 19
predetermined velocity vectors~ci in a 3D grid. The macroscopic veloc-
ity field~uð~x; tÞ emerges from the lattice dynamics through

~uð~x; tÞ ¼ 1
qð~x; tÞ

X
i

~cifið~x ; tÞ; (4)

linking the discrete LBE solution to the continuous NS.15,16

To couple the fluid with polymers, we compute the~uð~r iðtÞ; tÞ at
ith monomer position,~r iðtÞ, via trilinear interpolation across neigh-
boring grid nodes (see Fig. 2). A friction force,

~Fi;frict ¼ �f ~viðtÞ �~uð~r iðtÞ; tÞð Þ; (5)

where n is the friction coefficient and~viðtÞ is the monomer velocity,
acts on both the monomers and the fluid in opposite directions,
thereby mediating hydrodynamic interactions between monomers.

Polymer dynamics evolves through MD algorithm. Each ith
monomer obeys the Langevin equation with a modified friction term
according to the coupling mechanism mentioned above,

Mi
d~viðtÞ
dt

¼~Fi þ~Fi;frict þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2fkBT

p
giðtÞ; (6)

whereMi is the monomer mass,~F i includes all deterministic interpar-
ticle forces, T is the temperature, kB is the Boltzmann constant, and
giðtÞ is a delta-correlated stationary Gaussian process with zero-mean;
consequently, the last term corresponds to the “thermal” force.

Simulations are carried out in a simulation unit (SU) system,
with the monomer serving as the reference length scale, set to a dimen-
sionless diameter of r ¼ 1. Table I provides the simulation units (SUs)
and their equivalents in the International System of Units (SI). The
chosen monomer size reasonably estimates the persistence length of
hyaluronic acid (HA),17 while hydrated HA approaches the density of
water.18 Energy, time, and mass units are chosen to balance stable and
time-effective simulation of HA in water at room temperature.

The simulations are conducted in a rectangular box with dimen-
sions of 314r� 157r� 157r, and the LB lattice constant is set to
agrid ¼ 1r. The system evolves with a time step of dt ¼ 0:0001, with
the LB fluid field updated at each MD step. Shear flow is induced by
the constant motion of the upper wall with a no-slip boundary
condition.

FIG. 1. Snapshot of the simulated system with overlaid arrows indicating the direc-
tion and magnitude of flow, while the multicolored background represents velocity
magnitude gradients. The zoomed-in section reveals polymer chains.

FIG. 2. A simplified 2D scheme in which coupling is ensured by the friction force in
Eq. (5), driven by the difference between the monomer velocity~vðtÞ and fluid veloc-
ity~uð~r ; tÞ, later is interpolated from grid velocities~uð1…4; tÞ. Blue circles represent
monomers connected by brown springs. Multimedia available online.
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Steric repulsion between polymer beads and between the channel
walls and polymer beads is modeled using the Weeks–Chandler–
Andersen (WCA) potential, a shifted and truncated version of the
Lennard-Jones (LJ) potential,19

bUWCA rð Þ ¼ 4
r
r

� �12

� r
r

� �6
" #

þ 1; r � 21=6;

0; r > 21=6;

8>><
>>: (7)

where r represents the distance between the centers of two interacting
beads measured in units of r, b ¼ 1= kBTð Þ is the Boltzmann factor.

Polymer chains contain 15–50 beads, linked by stiff harmonic
springs between adjacent beads. The harmonic potential is defined as

Uh rð Þ ¼ 1
2
K r � rð Þ2: (8)

In this context, the elastic constant is K ¼ 30� 104.
Alternatively, we explored connecting the beads using finitely

extensible nonlinear elastic (FENE) springs.10 The FENE potential is
defined as

UFENE rð Þ ¼ � 1
2
ef r

2
f ln 1� r

rf

� �2
" #

; (9)

with the bond rigidity ef ¼ 30 and the maximum bond extension
rf ¼ 1:5. In this setup, polymers are allowed to break if the distance
between two beads exceeds 1:5r, resulting in the elimination of the
corresponding FENE bond. This approach revealed similar pulsating
instabilities as observed with harmonic springs. However, these simu-
lations proved to be less stable, and resolving the detailed dynamics of
polymer breakage lies beyond the scope of this study.

Overall, the described approach is implemented in the ESPResSo
simulation package, version 4.2.20

III. RESULTS AND DISCUSSION
A. Instability

Our numerical simulations indicate that as theWi increases, cor-
responding to a higher shear rate, the shear flow becomes unstable. At
lowWi, we observe a simple shear flow that matches the analytic solu-
tion ~u x; y; zð Þ ¼ _cz; 0; 0ð Þ. To examine the transition, we define an
order parameter based on the turbulent kinetic energy (TKE).
Specifically, the instability dynamics are characterized by the TKE

evolution: in each point of the hydrodynamic field, we calculate the
TKE as

TKEyz x; y; zð Þ ¼ 1
2

u0y
� �2 þ u0zð Þ2

� �
; (10)

where the fluctuating velocity components are given by

u0ð Þ2 ¼ 1
Nsteps

XN steps

i¼1

ui � uð Þ2: (11)

Summing TKEyz x; y; zð Þ over the entire channel volume yields the
order parameter TKEyz , shown in Fig. 3 as a function ofWi. By isolat-
ing the crossflow component of turbulent kinetic energy, TKEyz , which
accounts solely for fluctuations in the y and z directions, we derived a
more refined order parameter.

A clear transition from the laminar base flow (TKEyz ¼ 0) to the
emergence of a secondary flow (TKEyz > 0) is observed as the shear
rate _c increases beyond a critical value ofWic ¼ 1:65� 103. The tran-
sition is marked by a sharp increase in the order parameter, scaling as
Wi�Wicð Þn with n ¼ 0:65. The continuous increase in the order
parameter with Wi suggests a supercritical instability accompanied by
an increase in flow resistance. Similar behavior was previously
observed in the context of Taylor–Couette flow.21,22

We examine the Reynolds number range in simulations using the
standard definition Re ¼ u0L=�, where L is the channel width and � is
the kinematic viscosity. Data in Fig. 3 span Re ¼ 486–9322, with
Recritical � 5037. Prior work indicates laminar-to-turbulent transitions
in microchannels occur at Re > 2000.23 Therefore, our simulated
instability arises in a regime where elastic (polymer-driven) and iner-
tial (viscous/inertial-driven) turbulence coexist.

B. Dynamics of the instability

After identifying the emergence of instability, we proceed to
investigate the dynamics of the flow field beyond the elastic instability
in more detail. Therefore, the insights in Fig. 3(b) illustrate the evolu-
tion of TKEyz across the instability. It clearly shows that the flow
becomes stronger and more irregular, also including velocity bursts
after crossing the elastic instability.

TABLE I. System parameters in SI and their corresponding values in simulation
units.

System: SI units Sim. units

Energy unit 179 kB 298.15K 1 (E)
Time unit 3.40�10�11 s 1 (t)
Mass unit 5.35�10�23 kg 1 (m)
Distance unit 4 nm 1 (x)¼ 1 r
Kin. viscosity 8.92�10�7 m2 s�1 1.90 (x)2 (t)�1

Solvent density 0.997�103 kg2 m�3 1.19 (m) (x)�3

Polymer density 0.997�103 kg2 m�3 1.19 (m) (x)�3

FIG. 3. Bifurcation diagram of the elastic instability: order parameter TKEyz as a
function of Wi. The red dashed line indicates the fitted scaling law ðWi �WicÞn
with Wic ¼ 1:65� 103 and n ¼ 0:65, beyond the elastic instability. Insets illustrate
color-coded velocity field slices in the mid-channel xy-plane for different Wi as indi-
cated. The star denotes the configuration shown in Fig. 4.
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To study the system’s dynamics, we compute the dynamic struc-
ture factor (SF).24–26 The SF is the space- and time-Fourier transform
of the density–density correlation function, quantifying how density
fluctuations evolve over time and space. It links spatial scales to tempo-
ral behavior, revealing the system’s excitation spectrum. The dynamic
SF is defined as

S ~q hnð Þ; t1; t2
� � ¼ XNp�1

i¼0

ei~q hnð Þ�½~r i t1ð Þ�~r i t2ð Þ�: (12)

The wave vector ~q hnð Þ ¼ 0; q0 cos hnð Þ; q0 sin hnð Þ� �
is defined with

hn ¼ 2pn
Nq

for n ¼ 0; 1;…;Nq � 1, where Nq ¼ 128. This represents

the number of q-vectors in a ring within the y–z plane, orthogonal to
the polymer flow. Historically, SF emerged as a mathematical descrip-
tion of how materials (e.g., flowing polymers) scatter incident radia-
tion, later linked to ~q hnð Þ, which probes density fluctuations at a
wavelength � 2p=q0 in directions perpendicular to the flow. q0
¼ 0:03 effectively probes simulated instability and aligns with the rule
of thumb q0 � 2p=L. ~r i t1ð Þ �~r i t2ð Þ is the displacement of the ith
monomer between times t1 and t2, and Np is the total number of
monomers. Averaging over all hn and monomers yields the averaged
dynamic SF, plotted in Fig. 4(b).

S q0; t1; t2ð Þ ¼ 1
NpNq

XNq�1

n¼0

jS ~q hnð Þ; t1; t2
� �j: (13)

This measures the correlation between structures formed in the system
at timesteps t1 and t2. For instance, the dark square-like structure in the
bottom-left corner of Fig. 4(b) represents the initial alignment of poly-
mer chains along the flow direction, before the onset of instability (i.e.,
the laminar base flow). This is followed by a pulsating jet-like structure
along the diagonal, characterized by alternating wider and narrower

regions, which reflect the dynamics of the instability. Larger fluctuation
sizes indicate more stable structures, while narrower fluctuations corre-
spond to more chaotic regimes. The peaks and troughs in the TKEyz
time series shown in Fig. 4(a) strongly correlate with the fluctuation
widths. For clarity, Fig. 4(c) shows snapshots of narrower chaotic
regions (left) and a more stable state close to laminar flow (right).

The overall dynamics of the instability are cyclic and can be
divided into three main stages as shown in Fig. 2 (Multimedia available
online): (1) initial alignment of polymer chains along the flow direc-
tion, with wave-like perturbations forming in the yz-plane; (2) the
formed wave reaches the channel height and chokes, disrupting the
uniformity of the flow profile in the xz-plane; and (3) the flow profile
becomes more chaotic, with vortices forming and quickly dissipating.

C. Evolution of the instability

To further understand the instability, its internal structure is
examined. Figure 5(a) displays the colored vorticity field and gray
polymer chains, revealing the formation of a large vortex and its inter-
action with the polymer chains, particularly their stretching and align-
ment with the local flow, framing the vortex. The vortex’s orientation
is diagonal, implying significant components along all three axes. The
inside of the vortex appears sparse, with a higher polymer concentra-
tion in the surrounding regions, especially above the vortex.

Another visual confirmation of uneven polymer density is shown
in Fig. 5(b). A darker stripe, which lies in the xy-plane and is aligned
along the x axis, splits the elongated vortex bodies. Polymer density in
the darker stripe is lower than in the surrounding lighter regions, with
a V-shaped depletion clearly visible at the top of the snapshot.

The polymers appear bent in snapshots. We calculate the end-to-
end distance, ree, of polymer chains, defined as the absolute value of
the vector connecting the first and last monomers, i.e.,
~r ee ¼~r last �~r first. The ree distribution is plotted as a heatmap for each
time step in Fig. 5(c). The heatmap shows an irregular black dashed

FIG. 4. Supercritical instability at Wi ¼ 2:19� 103 [see star in Fig. 3(b)]. (a) Time series of TKEyz . (b) Dynamic structure factor. (c) Flow pattern snapshots: the two on the left
correspond to a more chaotic regime, while the two on the right depict a more stable state close to laminar flow. For more details regarding the dynamics, please see movie_1
(Fig. 2, multimedia available online).
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band around ree ¼ 50, representing the default polymer chain length.
Interruptions in the band correspond to peaks, indicating excessive
polymer stretching. The blue dashed line on the heatmap, taken from
the TKEyz time series [Fig. 4(a)], reveals that peaks in the heatmap
coincide with peaks in the TKEyz time series, suggesting that polymer
stretching is directly linked to flow instability and vortex formation.

This scenario could potentially lead to polymer chain breakage, with
the polymer in turn constraining the vortex and limiting its expansion.

D. Parameter dependence

Further analysis explores how the instability depends on parame-
ters such as polymer chain length, l, and concentration, /p. Figure 6(a)
shows the variation of TKEyz with l, keeping the total number of
chains constant. Instability appears beyond the critical chain length at
lc ¼ 26 beads. The red dashed line represents the fitted scaling law
l � lcð Þn with n ¼ 0:67. At l � 35 beads, TKEyz lð Þ peaks and then
decreases with further increases in l, indicating flow stabilization with
longer chains. To illustrate the development of the irregular flow pat-
tern after the instability, we present in Fig. 6(b) the time evolution for
three selected polymer lengths: immediately after the instability
(l ¼ 27), at the maximum TKEyz (l ¼ 35), and further beyond the
instability (l ¼ 50). Energy bursts are clearly visible for all polymer
lengths; however, close to the instability (l ¼ 27), they appear only at
the very end of the shown time series. With increasing l, the bursts
become more frequent, indicating turbulent dynamics. For larger l, the
average amplitude in TKEyz lð Þ decreases along with lower minima,
which suggests greater flow stabilization.

Figures 6(c) and 6(d) illustrate the dependence of TKEyz on /p at
two different fixed chain lengths l ¼ 30 and l ¼ 50, respectively. The
red dashed lines show the fitted scaling law /p � /p;c

� �n with
n ¼ 0:70, where the critical concentration /p;c is 0.55% for l ¼ 30
and, as extrapolated, 0.13% for l ¼ 50. Comparing Figs. 6(c) and 6(d)
reveals that instability occurs at significantly lower concentrations for
longer chains, consistent with previous experimental findings.27

In Fig. 6(c), TKEyz peaks before declining with further increases
in /p, similar to the behavior observed in Fig. 6(a). This pattern once
again suggests flow stabilization at higher polymer concentrations.

Figure 6(e) illustrates the stretching of the polymer bonds. Here,
a key idea is that longer polymers tend to be more stretchable. “Mean”
and “max” refer to the analysis of bond distances at a given snapshot—
either by calculating the average or taking the maximum values among
all polymeric chains, which we then average over time regardless of the
“mean” or “max.” Furthermore, at /p ¼ 1:2, both configurations have
the same TKE [Figs. 6(c) and 6(d)], indicating that even at equal TKE,
longer chains tend to stretch more.

FIG. 5. Inside the instability. (a) and (b) Vorticity field (color-coded) and polymer chains (magenta), showing a large vortex and polymer depletion region. Wi ¼ 2:19� 103. ðcÞ
End-to-end distance heatmap over time. Blue dashed line represents the TKEyz time series from Fig. 4(a). Star marks the time step of snapshots (a) and (b).

FIG. 6. Effect of other parameters on the instability. (a) Order parameter TKEyz vs
chain length l. ðbÞ Time series of TKEyz for different chain lengths [as indicated in
(a)] below and above the instability. (c) and (d) Variation of TKEyz with concentration
/p at fixed chain lengths l ¼ 30 and l ¼ 50, respectively. The red dashed lines

indicate the fitted scaling laws beyond the elastic instability: ðl � lcÞn1 with lc ¼ 26,
n1 ¼ 0:67, and ð/p � /p;cÞn2 with n2 ¼ 0:7. (e) Stretching of polymer bonds
(mean and max refer to the analysis of bond distances at a given snapshot, see
main text for further explanation).
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IV. CONCLUSION

In conclusion, we studied the elastic instability of a dilute polymer
solution within a three-dimensional straight channel, using a classical
bead-spring representation for each polymer chain to account for
spatial variations in polymer concentration and to overcome the limita-
tions of common continuum models (Oldroyd-B, FENE-P). By varying
the control parameters—the Weissenberg number, polymer lengths,
and concentration—we elucidated the interplay between flow and insta-
bility. We characterized the instability dynamics using TKE and used
the dynamic structure factor to gain further insight into system dynam-
ics. We observed that peaks and troughs in the TKE time series strongly
correlate with fluctuation widths in the dynamic structure factor,
suggesting a direct link between polymer stretching, flow instability,
and vortex formation. This scenario could potentially lead to polymer
chain breakage, with the polymer in turn constraining the vortex and
limiting its expansion. Future works will focus on unveiling the exact
bifurcation type and seeing if this might give an insight into the polyno-
mial scalings withWi, length, and concentration.

Getting further insight into the transitional pathway associated
with the instability may help to develop control strategies to control
transition to turbulence, which would be of special relevance to micro-
fluidic devices.28–30
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APPENDIX: CALCULATION OF THE RELAXATION TIME

To determine the relaxation time sR, we analyze the auto-
correlation function of the polymer end-to-end vector, ~r ee, under
equilibrium conditions (i.e., zero shear rate, _c ¼ 0),

A tð Þ ¼ h~r ee tð Þ �~r ee 0ð Þi
h~r ee 0ð Þ �~r ee 0ð Þi : (A1)

The relaxation time sR is then extracted by fitting A tð Þ with an
exponential decay function (see Fig. 7): f tð Þ ¼ exp �t=sRð Þ, from
which we find sR ¼ 4276 [s.u.]. The polymer studied consists of a
chain length of l ¼ 50 beads.
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